Sparsity-based edge noise removal from bilevel graphical document images

  • Thai V. HoangEmail author
  • Elisa H. Barney Smith
  • Salvatore Tabbone
Original Paper


This paper presents a new method to remove edge noise from graphical document images using geometrical regularities of the graphics contours that exist in the images. Denoising is understood as a recovery problem and is accomplished by employing a sparse representation framework in the form of a basis pursuit denoising algorithm. Directional information of the graphics contours is encoded by atoms in an overcomplete dictionary which is designed to match the input data. The optimal precision parameter used in this framework is shown to have a linear relationship with the level of the noise that exists in the image. Experimental results show the superiority of the proposed method over existing ones in terms of image recovery and contour raggedness.


Image degradation model Noise spread Bilevel image denoising Sparse representation  Dictionary learning  Directional denoising 


  1. 1.
    Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRefGoogle Scholar
  2. 2.
    Arce, G.R., Bacca, J., Paredes, J.L.: Nonlinear filtering for image analysis and enhancement. In: Bovik, A.C. (ed.) The Essential Guide to Image Processing, Chap. 12, pp. 263–291. Elsevier, Amsterdam (2009)CrossRefGoogle Scholar
  3. 3.
    Baird, H.S.: Document image defect models. In: Baird, H.S., Yamamoto, K., Bunke, H. (eds.) Structured Document Image Analysis, pp. 546–556. Springer, New York (1992)CrossRefGoogle Scholar
  4. 4.
    Barney Smith, E.H.: Modeling image degradations for improving OCR. In: Proceedings of the 16th European Signal Processing Conference (2008)Google Scholar
  5. 5.
    Barney Smith, E.H., Qiu, X.: Statistical image differences, degradation features, and character distance metrics. Int. J. Document Anal. Recognit. 6(3), 146–153 (2003)CrossRefGoogle Scholar
  6. 6.
    Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Boncelet, C.: Image noise models. In: Bovik, A.C. (ed.) The Essential Guide to Image Processing, Chap. 7, pp. 143–167. Elsevier, Amsterdam (2009)CrossRefGoogle Scholar
  8. 8.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Modeli. Simul. 4(2), 490–530 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise \({C}^2\) singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2002)CrossRefGoogle Scholar
  10. 10.
    Candès, E.J., Guo, F.: New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction. Signal Process. 82(11), 1519–1543 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Chandrasekaran, V., Wakin, M.B., Baron, D., Baraniuk, R.G.: Representation and compression of multidimensional piecewise functions using surflets. IEEE Trans. Inf. Theory 55(1), 374–400 (2009)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Daubechies, I., DeVore, R., Fornasier, M., Güntürk, C.S.: Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 63(1), 1–38 (2010)CrossRefzbMATHGoogle Scholar
  14. 14.
    Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximations. Constr. Approx. 13(1), 57–98 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Demanet, L., Ying, L.: Wave atoms and sparsity of oscillatory patterns. Appl. Comput. Harmon. Anal. 23(3), 368–387 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Do, M.N., Vetterli, M.: The finite ridgelet transform for image representation. IEEE Trans. Image Process. 12(1), 16–28 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Donoho, D.L.: For most large underdetermined systems of linear equations the minimal \(\ell _1\)-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(7), 797–829 (2006)CrossRefzbMATHGoogle Scholar
  19. 19.
    Donoho, D.L., Huo, X.: Beamlets and multiscale image analysis. In: Barth, T.J., Chan, T., Haimes, R. (eds.) Multiscale and Multiresolution Methods, pp. 149–196. Springer, Berlin (2001)Google Scholar
  20. 20.
    Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer, Berlin (2010)CrossRefGoogle Scholar
  23. 23.
    Elad, M., Matalon, B., Zibulevsky, M.: Image denoising with shrinkage and redundant representations. In: Proceedings of the IEEE Conference on Computer Vision and, Pattern Recognition, pp. 1924–1931 (2006)Google Scholar
  24. 24.
    Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)CrossRefGoogle Scholar
  25. 25.
    Guo, K., Labate, D.: Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 39(1), 298–318 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Hoang, T.V.: Image representations for pattern recognition. Ph.D. thesis, University of Nancy (2011)Google Scholar
  28. 28.
    Hoang, T.V., Barney Smith, E.H., Tabbone, S.: Edge noise removal in bilevel graphical document images using sparse representation. In: Proceedings of the 18th IEEE International Conference on Image Processing, pp. 3610–3613 (2011)Google Scholar
  29. 29.
    Hoang, T.V., Tabbone, S.: Text extraction from graphical document images using sparse representation. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, pp. 143–150 (2010)Google Scholar
  30. 30.
    ISO/IEC 13660:2001: Information technology—Office equipment—measurement of image quality attributes for hardcopy output—binary monochrome text and graphic images. ISO, Geneva, Switzerland (2001)Google Scholar
  31. 31.
    Jansen, M.H.: Noise Reduction by Wavelet Thresholding. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
  32. 32.
    Lee, T.S.: Image representation using 2D Gabor wavelets. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 959–971 (1996)CrossRefGoogle Scholar
  33. 33.
    Ma, J., Plonka, G.: The curvelet transform. IEEE Signal Process. Mag. 27(2), 118–133 (2010)CrossRefGoogle Scholar
  34. 34.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 11, 19–60 (2010)zbMATHMathSciNetGoogle Scholar
  35. 35.
    Maragos, P.: Morphological filtering. In: Bovik, A.C. (ed.) The Essential Guide to Image Processing, Chap. 13, pp. 293–321. Elsevier, Amsterdam (2009)CrossRefGoogle Scholar
  36. 36.
    McGillivary, C., Hale, C., Barney Smith, E.H.: Edge noise in document images. In: Proceedings of the 3rd Workshop on Analytics for Noisy Unstructured Text Data, pp. 17–24 (2009)Google Scholar
  37. 37.
    Meyer, F.G., Coifman, R.R.: Brushlets: a tool for directional image analysis and image compression. Appl. Comput. Harmon. Anal. 4(2), 147–187 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    O’Gorman, L.: Image and document processing techniques for the RightPages electronic library system. In: Proceedings of the 11th International Conference on Pattern Recognition, vol. 2, pp. 260–263 (1992)Google Scholar
  39. 39.
    Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)CrossRefGoogle Scholar
  40. 40.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)CrossRefMathSciNetGoogle Scholar
  41. 41.
    Pati, Y.C., Rezaiifar, R., Rezaiifar, Y.C.P.R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Proceedings of the 27th Annual Asilomar Conference on Signals, Systems, and Computers, pp. 40–44 (1993) Google Scholar
  42. 42.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)Google Scholar
  43. 43.
    Rajashekar, U., Simoncellis, E.P.: Multiscale denoising of photographic images. In: Bovik, A.C. (ed.) The Essential Guide to Image Processing, Chap. 11, pp. 241–261. Elsevier, Amsterdam (2009)CrossRefGoogle Scholar
  44. 44.
    Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. Tech. Rep. CS-2008-08, Technion (2008)Google Scholar
  45. 45.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)CrossRefzbMATHGoogle Scholar
  46. 46.
    Starck, J.L., Candès, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670–684 (2002)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl. 19(6), S165–S187 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Valveny, E., Dosch, P., Fornés, A., Escalera, S.: Report on the third contest on symbol recognition. In: Proceedings of the 7th International Workshop on Graphics Recognition, pp. 321–328 (2007)Google Scholar
  49. 49.
    Weaver, J.B., Xu, Y., Healy, D.M., Cromwell, L.D.: Filtering noise from images with wavelet transforms. Magn. Reson. Med. 21(2), 288–295 (1991)CrossRefGoogle Scholar
  50. 50.
    Weickert, J.: Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31(2–3), 111–127 (1999)CrossRefGoogle Scholar
  51. 51.
    Wipf, D., Rao, B.: Sparse Bayesian learning for basis selection. IEEE Trans. Signal Process. 52(8), 2153–2164 (2004)CrossRefMathSciNetGoogle Scholar
  52. 52.
    Yu, D., Yan, H.: An efficient algorithm for smoothing, linearization and detection of structural feature points of binary image contours. Pattern Recognit. 30(1), 57–69 (1997)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thai V. Hoang
    • 1
    Email author
  • Elisa H. Barney Smith
    • 2
  • Salvatore Tabbone
    • 3
  1. 1.Inria Nancy - Grand EstVillers-lès-NancyFrance
  2. 2.Electrical and Computer EngineeringBoise State UniversityBoiseUSA
  3. 3.LORIA, UMR 7503Université de LorraineVandoeuvre-lès-NancyFrance

Personalised recommendations