Advertisement

ICDAR 2009-Arabic handwriting recognition competition

  • Haikal El AbedEmail author
  • Volker Märgner
Original Paper

Abstract

This paper describes the Arabic handwriting recognition competition held at ICDAR 2009. This third competition (the first two were held at ICDAR 2005 and 2007, respectively) again used the IfN/ENIT-database with Arabic handwritten Tunisian town names. This very successful database is used today by more than 82 research groups from universities, research centers, and industries worldwide. At ICDAR 2009, 7 groups with 17 systems participated in the competition. The system evaluation was made on one known dataset and on two datasets unknown to the participants. The systems were compared based on the recognition rates achieved. Additionally, the relative speeds of the systems were compared. A description of the participating groups, their systems, and the results achieved are presented. As a very important result of this competition, a continuous improvement of the recognition rate from competition to competition of more than 5% can be observed.

Keywords

Arabic handwritten word recognition Evaluation Competition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Hajj, R., Likforman-Sulem, L., Mokbel, C.: Arabic handwriting recognition using baseline dependant features and hidden Markov modeling. In: 8th International Conference on Document Analysis and Recognition (ICDAR), vol. 2, pp. 893–897 (2005)Google Scholar
  2. 2.
    Al-Hajj R., Likforman-Sulem L., Mokbel C.: Combining slanted-frame classifiers for improved HMM-based arabic handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(7), 1165–1177 (2009)CrossRefGoogle Scholar
  3. 3.
    Al-Hajj, R., Mokbel, C., Likforman-Sulem, L.: Reconnaissance de l’écriture arabe cursive: combinaison de classifieurs MMCs á fenêtres orientées. In: Colloque International Francophone sur l’Ecrit et le Document (CIFED), pp. 271–276 (2006)Google Scholar
  4. 4.
    Dreuw, P., Heigold, G., Ney, H.: Confidence-based discriminative training for model adaptation in offline Arabic handwriting recognition. In: Proceedings of International Conference on Document Analysis and Recognition (ICDAR). pp. 596–600 (2009)Google Scholar
  5. 5.
    Dreuw, P., Jonas, S., Ney, H.: White-space models for offline Arabic handwriting recognition. In: Proceedings of 19th International Conference on Pattern Recognition (ICPR), pp. 1–4 (2008)Google Scholar
  6. 6.
    El Abed, H., Kherallah, M., Märgner, V., Alimi, A.M.: ICDAR 2009-Arabic online handwriting recognition competition. In: Proceedings of the 10th International Conference on Document Analysis and Recognition (ICDAR), vol. 3, pp. 1388–1392 (2009)Google Scholar
  7. 7.
    El Abed, H., Märgner, V.: The IFN/ENIT-database—a tool to develop Arabic handwriting recognition systems. In: Proceedings of the IEEE International Symposium on Signal Processing and its Applications, (ISSPA) (2007)Google Scholar
  8. 8.
    El Abed, H., Märgner, V.: Base de Données et compétitions-outils de développement et d’évaluation de systèmes de reconnaissance de mots manuscrits arabes. In: Proceedings of the 10th Colloque International Francophone sur l’Ecrit et le Document, CIFED, pp. 103–108 (2008)Google Scholar
  9. 9.
    El Abed, H., Märgner, V.: Reject rules and combination methods to improve Arabic handwritten word recognizers. In: Proceeding of the 11th International Conference on Frontiers in Handwriting Recognition, ICFHR, pp. 180–185 (2008)Google Scholar
  10. 10.
    El Abed, H., Märgner, V.: Improvement of Arabic handwriting recognition systems-combination and/or reject? In: Proceedings of the Document Recognition and Retrieval XVI, IS&T/SPIE International Symposium on Electronic Imaging, number 7247-10 (2009)Google Scholar
  11. 11.
    Elbaati, A., Kherallah, M., El Abed, H., Ennaji, A., Alimi, A.M.: Arabic Handwriting Recognition Using Restored Stroke Chronology. In: International Conference on Document Analysis and Recognition (ICDAR), pp. 411–415 (2009)Google Scholar
  12. 12.
    Graves, A.: Supervised sequence labelling with recurrent neural networks. PhD thesis, Fakultat für Informatik—Technische Universität München (2007)Google Scholar
  13. 13.
    Graves, A., Fernàndez, S., Schmidhuber, J.: Multi-dimensional recurrent neural networks. In: Proceedings of the International Conference on Artificial Neural Networks (2007)Google Scholar
  14. 14.
    Graves, A., Schmidhuber, J.: Offline handwriting recognition with multidimensional recurrent neural networks. In: Advances in Neural Information Processing Systems 21 (2009)Google Scholar
  15. 15.
    Grosicki, E., El Abed, H.: ICDAR 2009-handwriting recognition competition. In: Proceedings of the 10th International Conference on Document Analysis and Recognition (ICDAR), vol. 3, pp. 853–857, July 2009Google Scholar
  16. 16.
    Hamdani, M., El Abed, H., Kherallah, M., Alimi, A.M.: Combining multiple HMMs using on-line and off-line features for off-line Arabic handwriting recognition. In: International Conference on Document Analysis and Recognition (ICDAR), pp. 201–205 (2009)Google Scholar
  17. 17.
    Heigold, G., Deselaers, T., Schlüter, R., Ney, H.: Modified MMI/MPE: a direct evaluation of the margin in speech recognition. In: Proceedings of the 25th International Conference on Machine Learning, pp. 384–391 (2008)Google Scholar
  18. 18.
    Hochreiter S., Schmidhuber J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  19. 19.
    Kessentini Y., Paquet T., Benhamadou A.: Off-line handwritten word recognition using multi-stream hidden markov models. Pattern Recognit. Lett. 31(1), 60–70 (2010)CrossRefGoogle Scholar
  20. 20.
    Kessentini, Y., Paquet, T., Benhamadou, A.: A multi-stream HMM-based approach for off-line multi-script handwritten word recognition. In: Proceedings of 10th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 147–152 (2008)Google Scholar
  21. 21.
    Kherallah, M., Haddad, L., Alimi, A.M., Mitiche, A.: Towards the design of handwriting recognition system by neuro-fuzzy and beta-elliptical approaches. In: Proceedings of the Artificial Intelligence Applications & Innovations (AIAI), pp. 187–196 (2004)Google Scholar
  22. 22.
    Kimura, F., Shridhar, M., Chen, Z.: Improvements of a lexicon directed algorithm for recognition of unconstrained handwritten words. In: 2nd International Conference on Document Analysis and Recognition (ICDAR), pp. 18–22 (1993)Google Scholar
  23. 23.
    Kimura, F., Tsuruoka, S., Chen, Z., Shridhar, M.: Context directed handwritten word recognition for postal service applications. In: 5th Conference on Advanced Technology, pp. 199–213 (1992)Google Scholar
  24. 24.
    Knerr, S., Augustin, E.: A neural network-hidden Markov model hybrid for cursive word recognition. In: Proceedings of 14th International Conference on Pattern Recognition, vol. 2, pp. 1518–1520 (1998)Google Scholar
  25. 25.
    Märgner, V., El Abed, H.: ICDAR 2007—Arabic handwriting recognition competition. In: Proceedings of the 9th International Conference on Document Analysis and Recognition (ICDAR), vol. 2, pp. 1274–1278 (2007)Google Scholar
  26. 26.
    Märgner, V., El Abed, H.: ICDAR 2009 Arabic handwriting recognition competition. In: Proceedings of the 10th International Conference on Document Analysis and Recognition (ICDAR), vol. 3, pp. 1383–1387, July 2009Google Scholar
  27. 27.
    Märgner, V., Pechwitz, M., El Abed, H.: ICDAR 2005—Arabic handwriting recognition competition. In: 8th International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp.70–74 (2005)Google Scholar
  28. 28.
    Menasri, F., Vincent, N., Augustin, E., Cheriet, M.: Un systéme de reconnaissance de mots arabes manuscrits hors-ligne sans signes diacritiques. In: Proceedings of Colloque International Francophone sur l’Ecrit et le Document (CIFED), pp. 121–126 (2008)Google Scholar
  29. 29.
    Mokbel, C., Akl, H.A., Greige, H.: Automatic speech recognition of Arabic digits over Telefone network. In: International Conference Research Trends in Science and Technology (RTST) (2002)Google Scholar
  30. 30.
    Mozaffari S., Faez K., Märgner V., El Abed H.: Lexicon reduction using dots for off-line Farsi/Arabic handwritten word recognition. Pattern Recognit. Lett. 19(4), 724–734 (2008)CrossRefGoogle Scholar
  31. 31.
    Maddouri, S.S., Amiri, H.: Une méthode de reconnaissance de mots manuscrits arabes par réseaux de neurones transparent. In: Conference Internationale en Informatique (1999)Google Scholar
  32. 32.
    Maddouri, S.S., Amiri, H.: Combination of local and global vision modelling for Arabic handwritten words recognition. In: International Workshop on Frontiers in Handwriting Recognition (IWFHR), pp. 128–135 (2002)Google Scholar
  33. 33.
    Pechwitz, M., Maddouri, S.S., Märgner, V., Ellouze, N., Amiri H.: IFN/ENIT- database of handwritten Arabic words. In: Colloque International Francophone sur l’Ecrit et le Document (CIFED), pp. 127–136 (2002)Google Scholar
  34. 34.
    Schambach, M.-P.: Model length adaptation of an HMM based cursive word recognition system. In: 7th International Conference on Document Analysis and Recognition (ICDAR), pp. 109–113 (2003)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institut fuer Nachrichtentechnik (IfN)Technische Universitaet BraunschweigBraunschweigGermany

Personalised recommendations