A pseudo-skeletonization algorithm for static handwritten scripts

Original Paper

Abstract

This paper describes a skeletonization approach that has desirable characteristics for the analysis of static handwritten scripts. We concentrate on the situation where one is interested in recovering the parametric curve that produces the script. Using Delaunay tessellation techniques where static images are partitioned into sub-shapes, typical skeletonization artifacts are removed, and regions with a high density of line intersections are identified. An evaluation protocol, measuring the efficacy of our approach is described. Although this approach is particularly useful as a pre-processing step for algorithms that estimate the pen trajectories of static signatures, it can also be applied to other static handwriting recognition techniques.

Keywords

Skeletonization Thinning Pseudo skeleton Document and text processing Document analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lam L., Suen C.Y.: An evaluation of parallel thinning algorithms for character-recognition. IEEE Trans. Pattern Anal. Mach. Intell. 17(9), 914–919 (1995)CrossRefGoogle Scholar
  2. 2.
    Stheinherz, N.I.T.: A special skeletonization algorithm for cursive words. In: Proceedings of the Seventh International Workshop on Frontiers in Handwriting Recognition, International Unipen Foundation, pp. 529–534 (2000)Google Scholar
  3. 3.
    Dawoud, A., Kamel, M.: New approach for the skeletonization of handwritten characters in gray-scale images. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 1233–1237 (2003)Google Scholar
  4. 4.
    Wen M., Fan K., Han C.: Classification of chinese characters using pseudo skeleton features. J. Inf. Sci. Eng. 20, 903–922 (2004)Google Scholar
  5. 5.
    Kegl B., Krzyzak A.: Piecewise linear skeletonization using Principal curves. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 59–74 (2002)CrossRefGoogle Scholar
  6. 6.
    Ahmed M., Ward R.: A rotation invariant rule-based thinning algorithm for character recognition. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1672–1678 (2002)CrossRefGoogle Scholar
  7. 7.
    Zou J.J., Yan H.: Skeletonization of ribbon-like shapes based on regularity and singularity analysis. IEEE Trans. Syst. Man Cybern. B 31(3), 401–407 (2001)CrossRefGoogle Scholar
  8. 8.
    Zou J.J., Yan H.: Vectorization of cartoon drawings. In: Eades, P., Jin, J. (eds) Selected Papers from Pan-Sydney Workshop on Visual Information Processing, ACS, Sydney (2001)Google Scholar
  9. 9.
    Tang Y.Y., You X.: Skeletonization of ribbon-like shapes based on a new wavelet function. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1118–1133 (2003)CrossRefGoogle Scholar
  10. 10.
    Chiang J.Y., Tue S.C., Leu Y.C.: A new algorithm for line image vectorization. Pattern Recognit. 31(10), 1541–1549 (1998)CrossRefGoogle Scholar
  11. 11.
    Nel E., Du Preez J.A., Herbst B.M.: Estimating the pen trajectories of static signatures using hidden Markov models. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1733–1746 (2005)CrossRefGoogle Scholar
  12. 12.
    Nel, E., Du Preez, J.A., Herbst, B.M.: Estimating the pen trajectories of static scripts using hidden Markov models. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 41–47 (2005)Google Scholar
  13. 13.
    Nel E., Du Preez J.A., Herbst B.M.: Verification of dynamic curves extracted from static handwritten scripts. Pattern Recognit. 14, 3773–3785 (2008)CrossRefGoogle Scholar
  14. 14.
    Pan, J.C., Lee, S.: Offline tracing and representation of signatures. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 679–680 (1991)Google Scholar
  15. 15.
    Lee S., Pan J.C.: Offline tracing and representation of signatures. IEEE Trans. Syst. Man Cybernet. 22(4), 755–771 (1992)MATHCrossRefGoogle Scholar
  16. 16.
    Lallican, P.M., Viard-Gaudin, C.: A Kalman approach for stroke order recovering from off-line handwriting. In: Proceedings of the International Conference on Document Analysis and Recognition, IEEE Computer Society, pp. 519–523 (1997)Google Scholar
  17. 17.
    Chang H., Yan H.: Analysis of stroke structures of handwritten chinese characters. IEEE Trans. Syst. Man Cybernet. B 29(1), 47–61 (1999)CrossRefGoogle Scholar
  18. 18.
    Kato Y., Yasuhara M.: Recovery of drawing order from single-stroke handwriting images. IEEE Trans. Pattern Anal. Mach. Intell. 22(9), 938–949 (2000)CrossRefGoogle Scholar
  19. 19.
    Guo J.K., Doerman D., Rosenfeld A.: Forgery detection by local correspondence. Int. J. Pattern Recognit. Artif. Intell. 15(4), 579–641 (2001)CrossRefGoogle Scholar
  20. 20.
    Plamondon R., Maarse F.J.: An evaluation of motor models of handwriting. IEEE Trans. Syst. Man Cybernet. B 19(5), 1060–1072 (1989)CrossRefGoogle Scholar
  21. 21.
    Boccignone G., Chianese A., Cordella L.P., Marcelli A.: Recovering dynamic information from static handwriting. Pattern Recognit. 26(3), 409–418 (1993)CrossRefGoogle Scholar
  22. 22.
    Jäger, S.: A psychomotor method for tracking handwriting. In: Proceedings of the International Conference on Document Analysis and Recognition, IEEE Computer Society, pp. 528–531 (1997)Google Scholar
  23. 23.
    Govindaraju, V., Srihari, S.: Separating handwritten text from overlapping non-textual contours. In: International Workshop on Frontiers in Handwriting Recognition, pp. 111–119 (1991)Google Scholar
  24. 24.
    Doermann, D., Rosenfeld, A.: Recovery of temporal information from static images of handwriting. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 162–168 (1992)Google Scholar
  25. 25.
    Doermann D.S., Rosenfeld A.: Recovery of temporal information from static images of handwriting. Int. J. Comput. Vis. 15, 143–164 (1995)CrossRefGoogle Scholar
  26. 26.
    Doermann, D., Rosenfeld, A.: The interpretation and reconstruction of interfering strokes. In: Frontiers in Handwriting Recognition, pp. 41–50 (1993)Google Scholar
  27. 27.
    Lam L., Lee S., Suen C.Y.: Thinning methodologies-a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14(9), 869–885 (1992)CrossRefGoogle Scholar
  28. 28.
    Gonzalez R.C., Woods R.E.: Digital Image Processing. Addison-Wesley, Reading (1992)Google Scholar
  29. 29.
    Seul M., O’Gorman L., Sammon M.S.: Practical Algorithms for Image Analysis: Description, Examples, and Code. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  30. 30.
    Gonzalez R.C., Woods R.E., Eddins S.L.: Digital Image Processing using Matlab. Pearson Prentice Hall, New York (2004)Google Scholar
  31. 31.
    Verwer B., van Vliet L., Verbeek P.: Binary and grey-value skeletons: Metrics and algorithms. Int. J. Pattern Recognit. Artif. Intell. 7(5), 1287–1308 (1993)CrossRefGoogle Scholar
  32. 32.
    Lam L., Suen C.Y.: Automatic comparison of skeletons by shape matching methods. Int. J. Pattern Recognit. Artif. Intell. 7(5), 1271–1286 (1993)CrossRefGoogle Scholar
  33. 33.
    Fan K., Chen D., Wen M.: Skeletonization of binary images with nonuniform width via block decomposition and contour vector matching. Pattern Recognit. 31(7), 823–838 (1998)CrossRefGoogle Scholar
  34. 34.
    Rocha J.: Perceptually stable regions for arbitrary polygons. IEEE Trans. Syst. Man Cybernet. B 33(1), 165–171 (2003)CrossRefGoogle Scholar
  35. 35.
    Plamondon R., Suen C., Bourdeau M., Barriere C.: Methodologies for evaluating thinning algorithms for character recognition. Int. J. Pattern Recognit. Artif. Intell. 7, 1247–1270 (1993)CrossRefGoogle Scholar
  36. 36.
    De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry Algorithms and Applications, 2nd edn Springer, Berlin (1997)Google Scholar
  37. 37.
    Martinez T., Schulten K.: Topology representing networks. Neural Netw. 7(3), 507–522 (1994)CrossRefGoogle Scholar
  38. 38.
    Sedgewick R.: Algorithms. Addison-Wesley, Reading (1946)Google Scholar
  39. 39.
    Dolfing, J.G.A.: Handwriting recognition and verification: a hidden Markov approach. Ph.D. thesis, Eindhoven, Netherlands (1998)Google Scholar
  40. 40.
    Van Oosterhout, J.J.G.M., Dolfing, J.G.A., Aarts, E.H.L.: On-line signature verification with hidden Markov models. In: Proceedings of the International Conference on Pattern Recognition, pp. 1309–1312 (1998)Google Scholar
  41. 41.
    Coetzer, J.: Off-line signature verification, Ph.D. thesis, Stellenbosch University Press (2005)Google Scholar
  42. 42.
    Tukey J.W.: Exploratory Data Analysis, pp. 46–47. Addison- Wesley, Reading (1977)MATHGoogle Scholar
  43. 43.
    Chaikin G.: An algorithm for high speed curve generation. Comput. Vis. Gr. Image Process. 3, 346–349 (1974)CrossRefGoogle Scholar
  44. 44.
    Lane J.M., Riesenfeld R.F.: A theoretical development for the computer generation of piecewise polynomial surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2, 34–46 (1980)CrossRefGoogle Scholar
  45. 45.
    Nel, E., Du Preez, J.A., Herbst, B.M.: www.ussigbase.org
  46. 46.
    Lallican, P.M., Viard-Gaudin, C., Knerr, S., Binter, P.: The IRESTE ON-OFF (IRONOFF) handwritten image database. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 455–458 (1999)Google Scholar
  47. 47.
    Smith E.: Characterization of image degradation caused by scanning. Pattern Recognit. Lett. 19(13), 1191–1197 (1998)MATHCrossRefGoogle Scholar
  48. 48.
    Zhou J.Y., Lopresti D., Sarkar P., Nagy G.: Spatial Sampling Effects on Scanned 2-D Patterns. World Scientific, Singapore (1997)Google Scholar
  49. 49.
    Smith, E.H.B.: Scanner parameter estimation using bilevel scans of star charts. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 1164–1168 (2001)Google Scholar
  50. 50.
    Deller J.R., Hansen J.H.L., Proakis J.G.: Discrete-Time Processing of Speech Signals. IEEE Press, New York (2000)Google Scholar
  51. 51.
    Rabiner, L.R., Juang, B.H.: An introduction to hidden Markov models. IEEE ASSP Magazine pp. 4–16 (1986)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Emli-Mari Nel
    • 1
    • 3
  • J. A. du Preez
    • 1
  • B. M. Herbst
    • 2
  1. 1.Department of Electrical and Electronic EngineeringUniversity of StellenboschMatielandSouth Africa
  2. 2.Department of Applied MathematicsUniversity of StellenboschMatielandSouth Africa
  3. 3.Oxford Metrics Group (OMG)OxfordUK

Personalised recommendations