Optical recognition of psaltic Byzantine chant notation

  • Christoph Dalitz
  • Georgios K. Michalakis
  • Christine Pranzas
Original Paper

Abstract

This paper describes a document recognition system for the modern neume based notation of Byzantine music. We propose algorithms for page segmentation, lyrics removal, syntactical symbol grouping and the determination of characteristic page dimensions. All algorithms are experimentally evaluated on a variety of printed books for which we also give an optimal feature set for a nearest neighbour classifier. The system is based on the Gamera framework for document image analysis. Given that we cover all aspects of the recognition process, the paper can also serve as an illustration how a recognition system for a non standard document type can be designed from scratch.

Keywords

Optical music recognition (OMR) Base line detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chrysanthos: Archbishop of Dirrachios: Μέγα Θεωρητικòν τη̂ϛ Βυζαντινη̂ϛ Μουσικη̂ϛ In: Panagiotis, G. (ed.) Pelopidis from Peloponnesos, Greece. Michele Weis, Tergest (1832)Google Scholar
  2. 2.
    Nicholas, N.: Unicode Technical Note: Byzantine Musical Notation. Version 1.1, February 2006. http://www.unicode.org/notes/tn20/ (2006)
  3. 3.
    Pugin, L.: Optical music recognition of early typographic prints using hidden Markov models. In: Proceedings of the 7th International Conference on Music Information Retrieval (ISMIR), pp. 53–56 (2006)Google Scholar
  4. 4.
    Barton, L.W.G., Caldwell, J.A., Jeavons, P.G.: E-Library of medieval chant manuscript transcriptions. In: Proceedings of the 5th ACM/IEEE Joint Conference on Digital Libraries, pp. 320–329 (2005)Google Scholar
  5. 5.
    Hiley D.: Western Plainchant: A Handbook. Oxford University Press, New York (1995)Google Scholar
  6. 6.
    Gezerlis V.G., Theodoridis S.: Optical character recognition of the orthodox Hellenic Byzantine music notation. Pattern Recognit. 35(4), 895–914 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Droettboom, M., MacMillan, K., Fujinaga, I.: The Gamera framework for building custom recognition systems. In: Symposium on Document Image Understanding Technologies, pp. 275–286 (2003)Google Scholar
  8. 8.
    Droettboom, M., et al.: The Gamera Project Homepage. http://gamera.sourceforge.net/ (2004–2008)
  9. 9.
    Dalitz, C., Michalakis, G.K.: Christine Pranzas: Psaltiki Toolkit for Gamera. http://psaltiki4gamera.sourceforge.net/ (2007)
  10. 10.
    Dalitz, C., Karsten, T.: Using the Gamera framework for building a lute tablature recognition system. In: Proceedings ISMIR 2005, pp. 478–481 (2005)Google Scholar
  11. 11.
    Canfield, K.: A pilot study for a Navajo textbase. In: Proceedings of The 17th International Conference on Humanities Computing and Digital Scholarship (ACH/ALLC), pp. 28–30 (2005)Google Scholar
  12. 12.
    Reddy, S., Crane, G.: A Document Recognition System for Early Modern Latin. Chicago Colloquium on Digital Humanities and Computer Science (2006)Google Scholar
  13. 13.
    Dalitz C., Droettboom M., Pranzas B., Fujinaga I.: A comparative study of staff removal algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 30, 753–766 (2008)CrossRefGoogle Scholar
  14. 14.
    Pal U., Chaudhuri B.B.: Indian script character recognition: a survey. Pattern Recognit. 37, 1887–1899 (2004)CrossRefGoogle Scholar
  15. 15.
    Ma H., Doermann D.: Adaptive hindi OCR using generalized Hausdorff image comparison. ACM Trans. Asian Lang. Inf. Process. 2, 193–218 (2003)CrossRefGoogle Scholar
  16. 16.
    Ha, T.M., Bunke, H.: Image processing methods for document image analysis. In: Bunke, H., Wang, P.S.P. (eds.) Handbook of Character Recognition and Document Image Analysis, pp. 1–47. World Scientific (1997)Google Scholar
  17. 17.
    Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T.: Numerical Recipes in Pascal. Cambridge University Press, London (1993)Google Scholar
  18. 18.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice-Hall (2002)Google Scholar
  19. 19.
    Rosenfeld A., Pfaltz J.L.: Sequential operations in digital picture processing. J. ACM 13(4), 471–494 (1966)MATHCrossRefGoogle Scholar
  20. 20.
    Cattoni, R., Coianiz, T., Messelodi, S., Modena, C.M.: Geometric layout analysis techniques for document image understanding: a review. ITC-irst Technical Report TR#9703-09 (1998)Google Scholar
  21. 21.
    Mao S., Kanungo T.: Empirical performance evaluation methodology and its application to page segmentation algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 242–256 (2001)CrossRefGoogle Scholar
  22. 22.
    Davies E.R.: Training sets and a priori probabilities with the nearest neighbour method of pattern recognition. Pattern Recognit. Lett. 8, 11–13 (1988)MATHCrossRefGoogle Scholar
  23. 23.
    Kothanzad A., Hong Y.H.: Invariant image recognition by zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 12, 489–497 (1990)CrossRefGoogle Scholar
  24. 24.
    Droettboom, M.: Correcting broken characters in the recognition of historical printed documents. In: Joint Conference on Digital Libraries, pp. 364–366 (2003)Google Scholar
  25. 25.
    Brown L.D., Cai T.T., DasGupta A.: Interval estimation for a binomial proportion. Stat. Sci. 16(2), 101–117 (2001)MATHMathSciNetGoogle Scholar
  26. 26.
    Casey R.G., Lecolinet E.: A survey of methods and strategies in character segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(7), 690–706 (1996)CrossRefGoogle Scholar
  27. 27.
    Good, M.: Lessons from the Adoption of MusicXML as an Interchange Standard. In: Proceedings of XML 2006 (2006). See also: http://www.musicxml.org/xml.html
  28. 28.
    Roland, P., Downie, J.S.: Recent developments in the music encoding initiative project: enhancing digital musicology and scholarship. In: 19th Joint Conference on the Digital Humanities, Conference Abstracts, pp. 186–189 (2007). See also: http://www.lib.virginia.edu/digital/resndev/mei/
  29. 29.
    Schräder, G.: Ein XML-Datenformat zur Repräsentation kritischer Musikedition unter besonderer Berücksichtigung von Neumennotation. Studienarbeit, Musikwissenschaftliches Institut der Universität Tübingen (2007). See also: http://www.dimused.info/
  30. 30.
    Papadopoulos, S.: Melodos—Byzantine Music Composer Software. http://www.melodos.com/ (2008)
  31. 31.
    Kise K., Sato A., Iwata M.: Segmentation of page images using the area Voronoi diagram. Comput. Vis. Image Underst. 70, 370–382 (1998)CrossRefGoogle Scholar
  32. 32.
    Dengel, A., Hoch, R., Hönes, F., Jäger, T., Malburg, M., Weigel, A.: Techniques for improving OCR results. In: Bunke, H., Wang, P.S.P. (eds.) Handbook of Character Recognition and Document Image Analysis, pp. 227–258. World Scientific (1997)Google Scholar
  33. 33.
    Blostein D., Haken L.: Using diagram generation software to improve diagram recognition. IEEE Trans. Pattern Anal. Mach. Intell. 21, 1121–1136 (1999)CrossRefGoogle Scholar
  34. 34.
    Tsang E.P.K.: Foundations of Constraint Satisfaction. Academic Press, London and San Diego (1993)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Christoph Dalitz
    • 1
  • Georgios K. Michalakis
    • 2
  • Christine Pranzas
    • 1
  1. 1.Hochschule Niederrhein, Fachbereich Elektrotechnik und InformatikKrefeldGermany
  2. 2.Faculté de Médecine, Service de Médecine InterneUniversité de PoitiersPoitiers CedexFrance

Personalised recommendations