Improving the recognition by integrating the combination of descriptors

  • J. -P. Salmon
  • L. Wendling
  • S. Tabbone
Original Paper


A new method for combining shape descriptors based on a behavior study from a learning set is proposed in this paper. Each descriptor is applied on several clusters of objects or symbols. For each cluster and for any descriptor a pertinent map is directly carried out from the learning database. Then existing conflicts are assessed and integrated in such a map. At last, we show that the use of combination of descriptors enables to improve the recognition using real data.


Shape descriptors Additive combination Recognition of dropped initials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arya S., Mount D.M., Netanyahu N.S., Silverman R., Wu A. (1998): An optimal algorithm for approximate nearest neighbor searching. J ACM 45, 891–923zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ballard D.H. (1981): Generalizing the Hough transform to detect arbitary shapes. Pattern Recognit. 13(2): 111–122zbMATHCrossRefGoogle Scholar
  3. 3.
    Bamieh R., de Figueiredo R. (1986): A general moments invariants/attributed graph method for the three dimensional object recognition from a single image. IEEE J. Robotics Autom. 2, 240–242Google Scholar
  4. 4.
    Bhattacharya, A.: On a measures of divergence between two statistical populations defined by their probability distributions. Bull. Calculus Math Soc. 99–109 (1943)Google Scholar
  5. 5.
    Belkasim S.O., Shridar M., Ahmadi M. (1991): Pattern recognition with moment invariants: a comparative study and new results. Pattern Recognit. 24, 1117–1138CrossRefGoogle Scholar
  6. 6.
    Bernier T., Landry J-A. (2003): A new method for representing and matching shapes of natural objects. Pattern Recognit. 36(8): 1711–1723CrossRefGoogle Scholar
  7. 7.
    Cordella L.P., Vento M. (2000): Symbol recognition in documents: a collection of techniques? Int. J. Doc. Anal. and Recognit. 3(2): 73–88CrossRefGoogle Scholar
  8. 8.
    Deans S.R. (1983): Applications of the Radon Transform. Wiley Interscience, New YorkzbMATHGoogle Scholar
  9. 9.
    Derrode S., Ghorbel F. (2001): Robust and efficient Fourier– Mellin transform approximations for invariant grey-level image description and reconstruction. Comput. Vis. Image . 84(1): 25–39CrossRefGoogle Scholar
  10. 10.
    Gevers T., Smeulders A.W.M. (1999): Context-based image retieval by viewpoint-invariant color indexing. Image Vis. Comput. 17, 475–488CrossRefGoogle Scholar
  11. 11.
    Ghorbel F. (1994): A complete invariant description for gray-level images by the harmonic analysis approach. Pattern Recognit. Lett. 15, 1043–1051CrossRefGoogle Scholar
  12. 12.
    Jain A.K., Duin R.P.W., Mao J. (2000): Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1): 4–37CrossRefGoogle Scholar
  13. 13.
    Kassim A.A., Tan T., Tan K.H. (1999): A comparative study of efficient generalised Hough transform techniques. Image Vis. Comput. 17, 737–748CrossRefGoogle Scholar
  14. 14.
    Kauppinen H., Seppanen T., Pietikainen M. (1995): An experimental comparison of autoregressive and Fourier-based descriptors in 2D shape classification. IEEE Trans. Pattern Anal. Mach. Intell. 17(2): 201–207CrossRefGoogle Scholar
  15. 15.
    Khotanzad, A., Lu, J.: Classification of invariant image representation using a neural network. IEEE Trans. Acoust. Speech Signal Process. pp. 1028–1190 (1990)Google Scholar
  16. 16.
    Khotanzad A., Hong Y.H. (1990): Invariant image recognition by Zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 12(5): 489–497CrossRefGoogle Scholar
  17. 17.
    Loncaric S. (1998): A survey of shape analysis techniques. Pattern Recognit. 31(8): 983–1001CrossRefGoogle Scholar
  18. 18.
    Persoon E., Fu K. (1977): Shape discrimination using Fourier descriptors. IEEE Trans. Syst. Man Cybern. 7(3): 170–179MathSciNetCrossRefGoogle Scholar
  19. 19.
    Rubner Y., Tomasi S. (2000): Perceptual metrics for image database navigation. Kluwer, BostonGoogle Scholar
  20. 20.
    Rui, Y., She, A., Huang, T.S.: A modified Fourier descriptor for shape matching in MARS. Image Databases Multimedia Search, (ed.) S. K. Chang 8, 165–180 (1998)Google Scholar
  21. 21.
    Sharvit, D., Chan, J., Tek, H., Kimia, B.: Symmetry-based indexing of image databases. J. Vis. Commun. Image Represent. 12, (1998)Google Scholar
  22. 22.
    Tabbone, S., Wendling, L.: Binary shape normalization using the Radon transform. In: Discrete Geometry for Computer Imagery (DGCI). LNCS, vol. 2886, pp. 184–193. Naples, Italy (2003)Google Scholar
  23. 23.
    Teag R. (1980): Image analysis via the general theory of moments. J. Optical Soc. Am. 70(8): 920–921CrossRefGoogle Scholar
  24. 24.
    Wood J. (1996): Invariant pattern recognition: a review. Pattern Recognit. 29(1): 1–17CrossRefGoogle Scholar
  25. 25.
    Zhang D., Lu G. (2002): Shape-based image retrieval using generic Fourier desciptor, Signal Process. Image Commun. 17, 825–848CrossRefMathSciNetGoogle Scholar
  26. 26.
    Zhang D., Lu G. (2004): Review of shape representation and description techniques. Pattern Recognit. 37(1): 1–19zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.LORIAVandœuvre-les-Nancy CedexFrance

Personalised recommendations