Advertisement

Genetic engineering of hierarchical fuzzy regional representations for handwritten character recognition

  • Christian Gagné
  • Marc ParizeauEmail author
Original Paper

Abstract

This paper presents a genetic programming based approach for optimizing the feature extraction step of a handwritten character recognizer. This recognizer uses a simple multilayer perceptron as a classifier and operates on a hierarchical feature space of orientation, curvature, and center of mass primitives. The nodes of the hierarchy represent rectangular sub-regions of their parent node, the tree root corresponding to the character's bounding box. Within each sub-region, a variable number of fuzzy features are extracted. Genetic programming is used to simultaneously learn the best hierarchy and the best combination of fuzzy features. Moreover, the fuzzy features are not predetermined, they are inferred from the evolution process which runs a two-objective selection operator. The first objective maximizes the recognition rate, and the second minimizes the feature space size. Results on Unipen data show that, using this approach, robust representations could be obtained that out-performed comparable human designed hierarchical fuzzy regional representations.

Keywords

On-line character recognition Handwriting Evolutionary computations Fuzzy logic Unipen dataset 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Evolutionary Computation 1: Basic Algorithms and Operators. Institute of Physics Publishing, Bristol, UK (2000)Google Scholar
  2. 2.
    Bäck, T., Hammel, U., Schwefel, H.P.: Evolutionary computation: comments on the history and current state. IEEE Trans Evol Comput 1(1), 3–17 (1997)CrossRefGoogle Scholar
  3. 3.
    Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming—An Introduction; On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann, Dpunkt.verlag (1998)Google Scholar
  4. 4.
    Coello, C.A.C., Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer, Berlin (2002)zbMATHGoogle Scholar
  5. 5.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans Evol Comput 6(2), 182–197 (2002)CrossRefGoogle Scholar
  6. 6.
    Dubreuil, M., Gagné, C., Parizeau, M.: Distributed BEAGLE: A distributed evolutionary computations extension of Open BEAGLE. Available at http://beagle.gel.ulaval.ca/distributed (2005)Google Scholar
  7. 8.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2001)zbMATHGoogle Scholar
  8. 8.
    Gagné, C., Parizeau, M.: Open BEAGLE: A new versatile C++ framework for evolutionary computation. In: Genetic and Evolutionary Computations COnference (GECCO) 2002, Late-Breaking Papers, pp. 161–168. New York (2002)Google Scholar
  9. 9.
    Gagné, C., Parizeau, M.: Open BEAGLE: An evolutionary computation framework in C++. Available at http://beagle.gel.ulaval.ca (2005)Google Scholar
  10. 10.
    Gagné, C., Parizeau, M., Dubreuil, M.: Distributed BEAGLE: Anenvironment for parallel and distributed evolutionary computations. In: Procceedings of the 17th Annual International Symposium on High Performance Computing Systems and Applications (HPCS) 2003, pp. 201–208. Sherbrooke (QC) (2003)Google Scholar
  11. 11.
    Guyon, I., Schomaker, L., Plamondon, R., Liberman, M., Janet, S.: Unipen project of on-line data exchange and recognizer benchmarks. In: Proceedings of the 14th International Conference on Pattern Recognition (ICPR), pp. 29–33 (1994)Google Scholar
  12. 12.
    Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing, Boston, MA (1995)Google Scholar
  13. 13.
    Hébert, J.F., Parizeau, M., Ghazzali, N.: A new fuzzy geometric representation for on-line isolated character recognition. In: Proceedings of the 14th International Conference on Pattern Recognition, pp. 33–40 (1998)Google Scholar
  14. 14.
    Koza, J.R,.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA (1992)zbMATHGoogle Scholar
  15. 15.
    Koza, J.R,., David Andre, Bennett, F.H., III, Keane, M.: Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan Kaufman, San Fransisco (1999)Google Scholar
  16. 16.
    Krawiec, K.: Genetic programming-based construction of features for machine learning and knowledge discovery tasks. Gene Prog Evol Mach 3(4), 329–343 (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Li, X., Parizeau, M., Plamondon, R.: Segmentation and reconstruction of on-line handwritten scripts. Pattern Recogn 31(6), 675–684 (1998)CrossRefGoogle Scholar
  18. 18.
    Parizeau, M., Lemieux, A., Gagne, C.: Character recognition experiments using unipen data. In: Proceedings of 6th International Conference on Document Analysis and Recognition (ICDAR), pp. 481–485 (2001)Google Scholar
  19. 19.
    Park, J., Govindaraju, V., Srihari, S.N.: OCR in hierarchical feature space. IEEE Trans Pattern Anal Mach Intell 22(4), 400–407 (2000)CrossRefGoogle Scholar
  20. 20.
    Plamondon, R., Srihari, S.N.: Online and off-line handwriting recognition: a comprehensive survey. IEEE Trans Pattern Anal Mach Intell 22(1), 63–84 (2000)CrossRefGoogle Scholar
  21. 21.
    Radtke, P.V.W., Wong, T., Sabourin, R.: A multi-objective memetic algorithm for intelligent feature extraction. In: Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization (EMO 2005). Guanajuato, Mexico (2005)Google Scholar
  22. 22.
    Ratzlaff, E.H.: A scanning n-tuple classifier for online recognition of handwritten digits. In: Proceedings of 6th International Conf. on Document Analysis and Recognition (ICDAR), pp. 18–22 (2001)Google Scholar
  23. 23.
    Ratzlaff, E.H.: Methods, report and survey for the comparison of diverse isolated character recognition results on the unipen database. In: Proceedings of 7th International Conference on Document Analysis and Recognition (ICDAR), pp. 623–628 (2003)Google Scholar
  24. 24.
    Raymer, M.L., Punch, W.F., Goodman, E.D., Kuhn, L.A., Jain, A.K.: Dimensionality reduction using genetic algorithms. IEEE Trans Evol Comput 4(2), 164 (2000)CrossRefGoogle Scholar
  25. 25.
    Sherrah, J., Bogner, R.E., Bouzerdoum, A.: Automatic selection of features for classification using genetic programming. In: Proceedings of the 4th Australian and New Zealand Intelligent Information Systems Conference (ANZIIS) (1996)Google Scholar
  26. 26.
    Sherrah, J., Bogner, R.E., Bouzerdoum, A.: The evolutionary pre-processor: Automatic feature extraction for supervised classification using genetic programming. In: Genetic Programming 1997: Proceedings of the Second Annual Conference, pp. 304–312. Morgan Kaufmann, Stanford University, CA (1997)Google Scholar
  27. 27.
    Teredesai, A., Govindaraju, V.: GP-based secondary classifiers. Pattern Recogn 38(4), 500–512 (2005)Google Scholar
  28. 28.
    Teredesai, A., Park, J., Govindaraju, V.: Active handwritten character recognition using genetic programming. In: Proceedings of EuroGP'Ol, LNCS, vol. 2038, pp. 371–379. Springer-Verlag, Berlin (2001)Google Scholar
  29. 29.
    Trier, O.D., Jain, A.K., Taxt, T.: Feature extraction methods for character recognition—a survey. Pattern Recogn 29(4), 641–662 (1996)CrossRefGoogle Scholar
  30. 30.
    Yang, J., Honavar, V.: Feature subset selection using a genetic algorithm. IEEE Intell Syst 13, 44–49 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Laboratoire de Vision et Systèmes Numériques (LVSN), Département de Génie Électrique et de Génie InformatiqueUniversité LavalQuébec (Québec)Canada

Personalised recommendations