Document Analysis and Recognition

, Volume 6, Issue 4, pp 248–262

Segmentation and recognition of handwritten dates: an HMM-MLP hybrid approach

  • Marisa Morita
  • Robert Sabourin
  • Flávio Bortolozzi
  • Ching Y. Suen
Article

Abstract.

This paper presents an HMM-MLP hybrid system for segmenting and recognizing complex date images written on Brazilian bank checks. Through the recognition process, the system makes use of an HMM-based approach to segment a date image into subfields. Then the three obligatory date subfields (day, month, and year) are processed. A neural approach has been adopted to decipher strings of digits (day and year) and a Markovian strategy to recognize and verify words (month). The final decision module makes an accept/reject decision. We also introduce the concept of metaclasses of digits to reduce the lexicon size of the day and year and improve the precision of their segmentation and recognition. Experiments show interesting results on date recognition.

Keywords:

Date processing Metaclasses Hidden Markov models Neural networks Segmentation Recognition and verification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford, UKGoogle Scholar
  2. 2.
    Britto Jr A, Sabourin R, Bortolozzi F, Suen CY (2001) A two-stage HMM-based system for recognizing handwritten numeral strings. In: Proceedings of the 6th ICDAR, Seattle, September 2001, pp 396-400Google Scholar
  3. 3.
    De Oliveira Jr JJ, de Carvalho JM, de A Freitas CO, Sabourin R (2002) Feature sets evaluation for handwritten word recognition. In: Proceedings of the 8th IWFHR, Niagara on the Lake, CA, August 2002, pp 446-451Google Scholar
  4. 4.
    Favata JT, Srihari SN, Govindaraju V (1998) Off-line handwritten sentence recognition. In: Proceedings of the 6th IWFHR, Taegon, South Korea, August 1998, pp 171-176Google Scholar
  5. 5.
    Fumera G, Roli F, Giacinto G (2000) Reject option with multiple thresholds. Patt Recog 12:2099-2101Google Scholar
  6. 6.
    Ghosh J (2002) Multiclassifier systems: back to the future. In: Proceedings of the 3rd international workshop on multiple classifier systems, Cagliari, Italy, June 2002, pp 1-15Google Scholar
  7. 7.
    Gorski N, Anisimov V, Augustin E, Baret O, Maximov S (2001) Industrial bank check processing: the A2iA checkreader. Int J Doc Anal Recog 3:196-206Google Scholar
  8. 8.
    Ha TM, Bunke H (1997) Off-line, handwritten numeral recognition by perturbation method. IEEE Trans Patt Anal Mach Intell 19(5):535-539Google Scholar
  9. 9.
    Heutte L, Moreau J, Plessis B, Plagmaud J, Lecourtier Y (1993) Handwritten numeral recognition based on multiple feature extractors. In: Proceedings of the 2nd ICDAR, Tsukuba, Japan, October 1993, pp 167-170Google Scholar
  10. 10.
    Huang XD, Ariki Y, Jack MA (1990) Hidden Markov models for speech recognition. Edinburgh University Press, Edinburgh, UKGoogle Scholar
  11. 11.
    Jelinek F (1997) Statistical methods for speech recognition. MIT Press, Cambridge, MAGoogle Scholar
  12. 12.
    Kaufmann G, Bunke H (2000) Automated reading of cheque amounts. Patt Anal Appl 3:132-141Google Scholar
  13. 13.
    Kim G, Govindaraju V (1998) Handwritten phrase recognition as applied to street name images. Patt Recog 31(1):41-51Google Scholar
  14. 14.
    Kumar S, Ghosh J, Crawford MM (2002) Hierarchical fusion of multiple classifiers for hyperspectral data analysis. Patt Anal Appl 5(2):210-220Google Scholar
  15. 15.
    Lippmann RP (1989) Pattern classification using neural networks. IEEE Commun Mag 27(11):47-64Google Scholar
  16. 16.
    Marti U, Bunke H (2001) Text line segmentation and word recognition in a system for general writer independent handwriting recognition. In: Proceedings of the 6th ICDAR, Seattle, September 2001, pp 159-163Google Scholar
  17. 17.
    Marti U, Bunke H (2001) Using a statistical language model to improve the performance of an HMM-based cursive handwriting recognition system. Int J Patt Recog Artif Intell 15(1):65-90Google Scholar
  18. 18.
    Mohamed MA, Gader P (1996) Handwritten word recognition using segmentation-free hidden Markov modeling and segmentation-based dynamic programming techniques. IEEE Trans Patt Anal Mach Intell 18(5):548-554Google Scholar
  19. 19.
    Morita M, El Yacoubi A, Sabourin R, Bortolozzi F, Suen CY (2001) Handwritten month word recognition on Brazilian bank cheques. In: Proceedings of the 6th ICDAR, Seattle, September 2001, pp 972-976Google Scholar
  20. 20.
    Morita M, Sabourin R, Bortolozzi F, Suen CY (2002) Segmentation and recognition of handwritten dates. In: Proceedings of the 8th IWFHR, Niagara on the Lake, CA, August 2002, pp 105-110Google Scholar
  21. 21.
    Oliveira LS, Sabourin R, Bortolozzi F, Suen CY (2002) Automatic recognition of handwritten numerical strings: a recognition and verification strategy. IEEE Trans Patt Anal Mach Intell 24(11):1438-1454Google Scholar
  22. 22.
    Park J, Govindaraju V (2002) Use of adaptive segmentation in handwritten phrase recognition. Patt Recog 35:245-252Google Scholar
  23. 23.
    Park J, Govindaraju V, Srihari SN (1999) Efficient word segmentation driven by unconstrained handwritten phrase recognition. In: Proceedings of the 5th ICDAR, Bangalore, India, September 1999, pp 605-608Google Scholar
  24. 24.
    Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. IEEE 77(2):257-286Google Scholar
  25. 25.
    Srihari SN, Govindaraju V, Shekhawat A (1993) Interpretation of handwritten address in us mailstream. In: Proceedings of the 2nd ICDAR, Tsukuba, Japan, October 1993, pp 291-294Google Scholar
  26. 26.
    Suen CY, Xu Q, Lam L (1999) Automatic recognition of handwritten data on cheques - fact or fiction? Patt Recog Lett 20(13):1287-1295Google Scholar
  27. 27.
    Xu Q, Kim JH, Lam L, Suen CY (2002) Recognition of handwritten month words on bank cheques. In: Proceedings of the 8th IWFHR, Niagara on the Lake, CA, August 2002, pp 111-116Google Scholar
  28. 28.
    Xu Q, Lam L, Suen CY (2001) A knowledge-based segmentation system for handwritten dates on bank cheques. In: Proceedings of the 6th ICDAR, Seattle, September 2001, pp 384-388Google Scholar
  29. 29.
    El Yacoubi M, Gilloux M, Bertille JM (2002) A statistical approach for phrase location and recognition within a text line: an application to street name recognition. IEEE Trans Patt Anal Mach Intell 24(2):172-188Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • Marisa Morita
    • 1
    • 2
  • Robert Sabourin
    • 1
    • 2
    • 3
  • Flávio Bortolozzi
    • 3
  • Ching Y. Suen
    • 2
  1. 1.Laboratoire d’Imagerie, de Vision et d’Intelligence Artificielle (LIVIA)École de Technologie SupérieureMontrealCanada
  2. 2.Centre for Pattern Recognition and Machine Intelligence (CENPARMI)MontrealCanada
  3. 3.Pontíficia Universidade Católica do Paraná (PUCPR)CuritibaBrazil

Personalised recommendations