Skip to main content

Advertisement

Log in

Minimal modulation of the host immune response to SIS matrix implants by mesenchymal stem cells from the amniotic fluid

  • Original Article
  • Published:
Hernia Aims and scope Submit manuscript

An Invited commentary to this article was published on 16 November 2017

Abstract

Purpose

Surgical restoration of soft tissue defects often requires implantable devices. The clinical outcome of the surgery is determined by the properties inherent to the used matrix. Mesenchymal stem cells (MSC) modulate the immune processes after in vivo transplantation and their addition to matrices is associated with constructive remodeling. Herein we evaluate the potential of MSC derived from the amniotic fluid (AF-MSC), an interesting MSC source for cell therapeutic applications in the perinatal period, for immune modulation when added to a biomaterial.

Methods

We implant cell free small intestinal submucosa (SIS) or SIS seeded with AF-MSC at a density of 1 × 105/cm2 subcutaneously at the abdominal wall in immune competent rats. The host immune response is evaluated at 3, 7 and 14 days postoperatively.

Results

The matrix-specific or cellular characteristics are not altered after 24 h of in vitro co-culture of SIS with AF-MSC. The host immune response was not different between animals implanted with cell free or AF-MSC-seeded SIS in terms of cellular infiltration, vascularity, macrophage polarization or scaffold replacement. Profiling the mRNA expression level of inflammatory cytokines at the matrix interface shows a significant reduction in the expression of the pro-inflammatory marker Tnf-α and a trend towards lower iNos expression upon AF-MSC-seeding of the SIS matrix. Anti-inflammatory marker expression does not alter upon cell seeding of matrix implants.

Conclusion

We conclude that SIS is a suitable substrate for in vitro culture of AF-MSC and fibroblasts. AF-MSC addition to SIS does not significantly modulate the host immune response after subcutaneous implantation in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Robert M et al (2014) Absorbable mesh augmentation compared with no mesh for anterior prolapse: a randomized controlled trial. Obstet Gynecol 123(2 Pt 1):288–294

    Article  PubMed  Google Scholar 

  2. Romao RL et al (2012) What is the best prosthetic material for patch repair of congenital diaphragmatic hernia? Comparison and meta-analysis of porcine small intestinal submucosa and polytetrafluoroethylene. J Pediatr Surg 47(8):1496–1500

    Article  PubMed  Google Scholar 

  3. Witt RG et al (2013) Short-term experience of porcine small intestinal submucosa patches in paediatric cardiovascular surgery. Eur J Cardio-thorac Surg 44(1):72–76

    Article  Google Scholar 

  4. Baldursson BT et al (2015) Healing rate and autoimmune safety of full-thickness wounds treated with fish skin acellular dermal matrix versus porcine small-intestine submucosa: a noninferiority study. Int J Low Extrem Wounds 14(1):37–43

    Article  CAS  PubMed  Google Scholar 

  5. Janis AD et al (2012) Structural characteristics of small intestinal submucosa constructs dictate in vivo incorporation and angiogenic response. J Biomater Appl 26(8):1013–1033

    Article  CAS  PubMed  Google Scholar 

  6. Mareschi K et al (2001) Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 86(10):1099–1100

    CAS  PubMed  Google Scholar 

  7. Rus Ciuca D et al (2011) Isolation and characterization of chorionic mesenchymal stem cells from the placenta. Rom J Morphol Embryol 52(3):803–808

    CAS  PubMed  Google Scholar 

  8. Murphy S et al (2010) Amnion epithelial cell isolation and characterization for clinical use. Curr Protoc Stem Cell Biol 1:1E 6

    PubMed  Google Scholar 

  9. Zia S et al (2013) Routine clonal expansion of mesenchymal stem cells derived from amniotic fluid for perinatal applications. Prenat Diagn 33(10):921–928

    PubMed  Google Scholar 

  10. De Coppi P et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106

    Article  PubMed  Google Scholar 

  11. Patel M, Fisher JP (2008) Biomaterial scaffolds in pediatric tissue engineering. Pediatr Res 63(5):497–501

    Article  PubMed  Google Scholar 

  12. Grethel EJ et al (2006) Prosthetic patches for congenital diaphragmatic hernia repair: surgisis vs gore-tex. J Pediatr Surg 41(1):29–33 (discussion 29–33)

    Article  PubMed  Google Scholar 

  13. Laituri CA et al (2010) Outcome of congenital diaphragmatic hernia repair depending on patch type. Eur J Pediatr Surg 20(6):363–365

    Article  CAS  PubMed  Google Scholar 

  14. Konstantinovic ML et al (2005) Comparison of host response to polypropylene and non-cross-linked porcine small intestine serosal-derived collagen implants in a rat model. BJOG 112(11):1554–1560

    Article  CAS  PubMed  Google Scholar 

  15. Badylak S et al (2002) Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res 103(2):190–202

    Article  PubMed  Google Scholar 

  16. Brown BN et al (2012) Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater 8(3):978–987

    Article  CAS  PubMed  Google Scholar 

  17. Lin HK et al (2014) Understanding roles of porcine small intestinal submucosa in urinary bladder regeneration: identification of variable regenerative characteristics of small intestinal submucosa. Tissue Eng Part B Rev 20(1):73–83

    Article  CAS  PubMed  Google Scholar 

  18. Owen TJ et al (1997) Calcification potential of small intestinal submucosa in a rat subcutaneous model. J Surg Res 71(2):179–186

    Article  CAS  PubMed  Google Scholar 

  19. Petter-Puchner A (2007) Adverse effects of porcine small intestine submucosa implants in experimental ventral hernia repair. Surg Endosc 21(5):830–831

    Article  CAS  PubMed  Google Scholar 

  20. Squillaro T, Peluso G, Galderisi U (2016) Clinical trials with mesenchymal stem cells: an update. Cell Transplant 25(5):829–848

    Article  PubMed  Google Scholar 

  21. Zhou Y et al (2011) Expansion and delivery of adipose-derived mesenchymal stem cells on three microcarriers for soft tissue regeneration. Tissue Eng Part A 17(23–24):2981–2997

    Article  CAS  PubMed  Google Scholar 

  22. Klinger A et al (2016) Living scaffolds: surgical repair using scaffolds seeded with human adipose-derived stem cells. Hernia 20(1):161–170

    Article  CAS  PubMed  Google Scholar 

  23. Chang CW et al (2016) Mesenchymal stem cell seeding of porcine small intestinal submucosal extracellular matrix for cardiovascular applications. PLoS One 11(4):e0153412

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chung SY et al (2005) Bladder reconstitution with bone marrow derived stem cells seeded on small intestinal submucosa improves morphological and molecular composition. J Urol 174(1):353–359

    Article  PubMed  Google Scholar 

  25. Du XF et al (2012) Tracheal reconstruction by mesenchymal stem cells with small intestine submucosa in rabbits. Int J Pediatr Otorhinolaryngol 76(3):345–351

    Article  PubMed  Google Scholar 

  26. Urita Y et al (2008) Evaluation of diaphragmatic hernia repair using PLGA mesh-collagen sponge hybrid scaffold: an experimental study in a rat model. Pediatr Surg Int 24(9):1041–1045

    Article  PubMed  Google Scholar 

  27. Qin HH, Dunn JC (2011) Small intestinal submucosa seeded with intestinal smooth muscle cells in a rodent jejunal interposition model. J Surg Res 171(1):e21–e26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Monteiro Carvalho Mori da Cunha MG et al (2015) Amniotic fluid derived stem cells with a renal progenitor phenotype inhibit interstitial fibrosis in renal ischemia and reperfusion injury in rats. PLoS One 10(8):e0136145

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zia SQM et al (2016) Human amniotic fluid stem cells modulate muscle regeneration after cardiotoxin injury in mice. J Stem Cell Res Ther 6:339

    Article  Google Scholar 

  30. Torres DS et al (2000) Tendon cell contraction of collagen-GAG matrices in vitro: effect of cross-linking. Biomaterials 21(15):1607–1619

    Article  CAS  PubMed  Google Scholar 

  31. Allman AJ et al (2001) Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation 71(11):1631–1640

    Article  CAS  PubMed  Google Scholar 

  32. Brown BN et al (2012) Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33(15):3792–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Badylak SF et al (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A 14(11):1835–1842

    Article  CAS  PubMed  Google Scholar 

  34. Barker DA et al (2013) Multilayer cell-seeded polymer nanofiber constructs for soft-tissue reconstruction. JAMA Otolaryngol Head Neck Surg 139(9):914–922

    Article  PubMed  Google Scholar 

  35. Dobreva MP et al (2010) On the origin of amniotic stem cells: of mice and men. Int J Dev Biol 54(5):761–777

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Catherina Luyten and Rieta Van Bree for their technical support with the experiments. FL is funded by Bijzonder Onderzoeksfonds KU Leuven (2013 OT/13/115). The translational research program is being funded by the Fonds voor Wetenschappelijk Onderzoek Vlaanderen (FWO; JD as clinical researcher; 1.8.012.07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Deprest.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The SIS implants were kindly donated by Cook Biotech (West Lafayette, IN) within an agreement for independent research evaluation. This agreement was handled by the transfer office of the KU Leuven (Leuven Research and Development).

Ethical approval

The cell harvesting protocol was approved by the Ethics Committee of the University Hospital of Leuven (license ML4149), Belgium. The animal study was approved by the Ethics Committee for Animal Experimentation of the Faculty of Medicine of the KU Leuven (license 239/2014).

Human and animal rights

Animals were treated in accordance with current national guidelines on animal welfare.

Informed consent

Informed consent was not required for this study as no human participants were involved.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1760 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesage, F., Pranpanus, S., Bosisio, F.M. et al. Minimal modulation of the host immune response to SIS matrix implants by mesenchymal stem cells from the amniotic fluid. Hernia 21, 973–982 (2017). https://doi.org/10.1007/s10029-017-1635-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10029-017-1635-6

Keywords

Navigation