, Volume 21, Issue 4, pp 643–648 | Cite as

Burst inflation test for measuring biomechanical properties of rat abdominal walls

  • V. D. Mahalingam
  • B. C. Syverud
  • A. M. Myers
  • K. W. VanDusen
  • L. M. Larkin
  • W. M. Kuzon
  • E. M. Arruda
Original Article



Evaluation of potential grafts to improve upon current strategies for abdominal wall (AW) repair in small animal models typically involves mechanical testing using methods that currently are inadequate to assess physiologically relevant parameters. This study introduces burst inflation testing as a more relevant assessment of the mechanical integrity of the AW compared to traditional tensile testing.


AWs were excised from 14 healthy adult Fischer 344 rats and tested using either a custom burst inflation device or an Instron tensile testing system. Modulus outcomes from both testing methods were compared.


Mechanical analyses of native AW using burst and tensile testing methods resulted in similar average tissue moduli, but with the burst test, there was significantly less variability among specimens.


The burst test had greater repeatability compared to tensile testing and has the ability to test repaired AWs without compromising the integrity of the repair site, making it a useful tool for assessing graft repairs.


Incisional hernia Burst inflation Tensile strength Mechanical test Modulus 



Funding provided by the Department of Surgery, Section of Plastic Surgery at University of Michigan.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Human and animal rights

All procedures performed involving animals were in accordance with the ethical standards of the University Committee for the Use and Care of Animals at the University of Michigan (PRO00005146). This article does not contain any studies with human participants performed by any of the authors.

Informed consent



  1. 1.
    Owings MF, Kozak LJ (1998) Ambulatory and inpatient procedures in the United States, 1996. Vital Health Stat 13:1–119Google Scholar
  2. 2.
    Flum DR, Horvath K, Koepsell T (2003) Have outcomes of incisional hernia repair improved with time? A population-based analysis. Ann Surg 237:129–135. doi: 10.1097/01.SLA.0000041042.86225.9C CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Darehzereshki A, Goldfarb M, Zehetner J et al (2013) Biologic versus nonbiologic mesh in ventral hernia repair: a systematic review and meta-analysis. World J Surg 38:40–50. doi: 10.1007/s00268-013-2232-1 CrossRefGoogle Scholar
  4. 4.
    Melman L, Jenkins ED, Hamilton NA et al (2011) Early biocompatibility of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral hernia repair. Hernia 15:157–164. doi: 10.1007/s10029-010-0770-0 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Klinger A, Kawata M, Villalobos M et al. (2015) Living scaffolds: surgical repair using scaffolds seeded with human adipose-derived stem cells. Hernia 20:161–170. doi: 10.1007/s10029-015-1415-0 CrossRefPubMedGoogle Scholar
  6. 6.
    Cavallo JA, Greco SC, Liu J et al (2013) Remodeling characteristics and biomechanical properties of a crosslinked versus a non-crosslinked porcine dermis scaffolds in a porcine model of ventral hernia repair. Hernia 19:207–218CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Criss CN, Gao Y, De Silva G et al (2015) The effects of Losartan on abdominal wall fascial healing. Hernia 19(4):645–650CrossRefPubMedGoogle Scholar
  8. 8.
    Broderick G, McIntyre J, Noury M et al (2012) Dermal collagen matrices for ventral hernia repair: comparative analysis in a rat model. Hernia 16(3):333–343CrossRefPubMedGoogle Scholar
  9. 9.
    Winkler AA, Milburn ML, Holton LH et al (2008) Effect of suture material on tensile strength and complication rate in abdominal fascial defects repaired with acellular dermal matrix. Hernia 12:33–38. doi: 10.1007/s10029-007-0274-8 CrossRefPubMedGoogle Scholar
  10. 10.
    National Research Council (US) (2011) Guide for the care and use of laboratory animalsGoogle Scholar
  11. 11.
    Timoshenko S (1983) Strength of materials, Pt. 2. Krieger Publishing Company, MalabarGoogle Scholar
  12. 12.
    Ogden RW (2003) Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue. In: Biomechanics of soft tissue in cardiovascular systems, vol 441. Springer, Vienna, pp 65–108. doi: 10.1007/978-3-7091-2736-0_3Google Scholar
  13. 13.
    DuBay DA, Wang X, Adamson B et al (2006) Mesh incisional herniorrhaphy increases abdominal wall elastic properties: a mechanism for decreased hernia recurrences in comparison with suture repair. Surgery 140:14–24. doi: 10.1016/j.surg.2006.01.007 CrossRefPubMedGoogle Scholar
  14. 14.
    Beer F, DeWolf J Jr, Johnston ER, Mazurek D (2010) Statics and mechanics of materials. McGraw-Hill Education, New YorkGoogle Scholar
  15. 15.
    DuBay DA, Choi W, Urbanchek MG et al (2007) Incisional herniation induces decreased abdominal wall compliance via oblique muscle atrophy and fibrosis. Ann Surg 245:140–146. doi: 10.1097/01.sla.0000251267.11012.85 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag France 2016

Authors and Affiliations

  • V. D. Mahalingam
    • 1
    • 2
  • B. C. Syverud
    • 3
  • A. M. Myers
    • 1
  • K. W. VanDusen
    • 2
  • L. M. Larkin
    • 2
    • 3
  • W. M. Kuzon
    • 1
    • 4
  • E. M. Arruda
    • 3
    • 5
  1. 1.Section of Plastic Surgery, Department of SurgeryUniversity of MichiganAnn ArborUSA
  2. 2.Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborUSA
  3. 3.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  4. 4.Ann Arbor Veterans Administration Medical CenterAnn ArborUSA
  5. 5.Department of Mechanical Engineering, Program in Macromolecular Science and EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations