Hernia

, Volume 17, Issue 6, pp 779–789 | Cite as

An in vitro study assessing the effect of mesh morphology and suture fixation on bacterial adherence

  • D. Sanders
  • J. Lambie
  • P. Bond
  • R. Moate
  • J. A. Steer
Original Article

Abstract

Purpose

Prosthetic infections, although relatively uncommon in hernia surgery, are a source of considerable morbidity and cost. The aims of this experimental study were to assess the influence of the morphological properties of the mesh on bacterial adherence in vitro. The morphological properties assessed were the polymer type, filament type, filament diameter, mesh weight, mean pore size, and the addition of silver chlorhexidine and titanium coatings. In addition, the study assessed the effect on bacterial adherence of adding a commonly used suture to the mesh and compared adherence rates to self-gripping mesh that does not require suture fixation.

Methods

Eight commercially sourced flat hernia meshes with different material characteristics were included in the study. These were Prolene® (Ethicon®), DualMesh® (Gore®), DualMesh® Plus (Gore®), Parietex™ ProGrip (Covidien™), TiMesh® Light (GfE Medical), Bard® Soft Mesh (Bard®), Vypro® (Ethicon®), and Omyra® (Braun®). Individual meshes were inoculated with Staphylococcus epidermidis and Staphylococcus aureus with a bacterial inoculum of 102 bacteria. To assess the effect of suture material on bacterial adhesion, a sterile piece of commonly used monofilament suture material (2.0 Prolene®, ZB370 Ethicon®) was sutured to selected meshes (chosen to represent different commonly used polymers and/or the presence of an antibacterial coating). Inoculated meshes were incubated for 18 h in tryptone soy broth and then analysed using scanning electron microscopy. A previously validated method for enumeration of bacteria using automated stage movement electron microscopy was used for direct bacterial counting. The final fraction of the bacteria adherent to the mesh was compared between the meshes and for each morphological variable. One-way analysis of variance (ANOVA) was performed on the bacterial counts. Tukey’s test was used to determine the difference between the different biomaterials in the event the ANOVA was significant.

Results

Properties that significantly increased the mean bacterial adherence were the expanded polytetrafluoroethylene polymer (P < 0.001); multifilament meshes (P < 0.001); increased filament diameter (P < 0.001); increased mesh weight (P < 0.001); and smaller mean pore size (P < 0.001). In contrast, mesh coating with antibacterial silver chlorhexidine significantly reduced bacterial adhesion (S. epidermidis mean bacterial count 140.7 ± 19.1 SE with DualMesh® vs. 2.3 ± 1.2 SE with DualMesh® Plus, P < 0.001; S. aureus mean bacterial count 371.7 ± 22.7 SE with DualMesh® vs. 19.3 ± 4.7 SE with DualMesh® Plus, P = 0.002). The addition of 2.0 Prolene suture material significantly increased the mean number of adherent bacteria independent of the mesh polymer or mesh coating (P = 0.04 to <0.001).

Conclusion

The present study demonstrates the significant influence of the prosthetic load on bacterial adherence. In patients at increased risk of infection, low prosthetic load materials, i.e., lightweight meshes with large pores, may be beneficial. Furthermore self-fixing meshes, which avoid increasing the prosthetic load and antibacterial impregnated meshes, may have an advantage in this setting.

Keywords

Inoculum Bacterial colonisation Hernia Mesh Self-fixing mesh 

References

  1. 1.
    Frey DM, Wildisen A, Hamel CT, Zuber M, Oertli D, Metzger J (2007) Randomized clinical trial of Lichtenstein’s operation versus mesh plug for inguinal hernia repair. Br J Surg 94(1):36–41. doi:10.1002/bjs.5580 PubMedCrossRefGoogle Scholar
  2. 2.
    McGreevy JM, Goodney PP, Birkmeyer CM, Finlayson SR, Laycock WS, Birkmeyer JD (2003) A prospective study comparing the complication rates between laparoscopic and open ventral hernia repairs. Surg Endosc 17(11):1778–1780. doi:10.1007/s00464-002-8851-5 PubMedCrossRefGoogle Scholar
  3. 3.
    Stoppa RE (1989) The treatment of complicated groin and incisional hernias. World J Surg 13(5):545–554PubMedCrossRefGoogle Scholar
  4. 4.
    Yerdel MA, Akin EB, Dolalan S, Turkcapar AG, Pehlivan M, Gecim IE, Kuterdem E (2001) Effect of single-dose prophylactic ampicillin and sulbactam on wound infection after tension-free inguinal hernia repair with polypropylene mesh: the randomized, double-blind, prospective trial. Ann Surg 233(1):26–33PubMedCrossRefGoogle Scholar
  5. 5.
    Rutkow IM (2003) Demographic and socioeconomic aspects of hernia repair in the United States in 2003. Surg Clin North Am 83(5):1045–1051PubMedCrossRefGoogle Scholar
  6. 6.
    An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43(3):338–348. doi:10.1002/(SICI)1097-4636(199823)43:3<338:AID-JBM16>3.0.CO;2-B PubMedCrossRefGoogle Scholar
  7. 7.
    Morra M, Cassinelli C (1997) Bacterial adhesion to polymer surfaces: a critical review of surface thermodynamic approaches. J Biomater Sci Polym Ed 9(1):55–74PubMedCrossRefGoogle Scholar
  8. 8.
    Katsikogianni M, Missirlis YF (2004) Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria–material interactions. Eur Cell Mater 8:37–57 (pii: vol008a05)PubMedGoogle Scholar
  9. 9.
    Kumar S (1999) Chronic groin sepsis following tension-free inguinal hernioplasty. Br J Surg 86(11):1482PubMedGoogle Scholar
  10. 10.
    Falagas ME, Kasiakou SK (2005) Mesh-related infections after hernia repair surgery. Clin Microbiol Infect 11(1):3–8. doi:10.1111/j.1469-0691.2004.01014.x PubMedCrossRefGoogle Scholar
  11. 11.
    Sanders DL, Kingsnorth AN (2012) Prosthetic mesh materials used in hernia surgery. Expert Rev Med Devices 9(2):159–179. doi:10.1586/erd.11.65 PubMedCrossRefGoogle Scholar
  12. 12.
    Aydinuraz K, Agalar C, Agalar F, Ceken S, Duruyurek N, Vural T (2009) In vitro S. epidermidis and S. aureus adherence to composite and lightweight polypropylene grafts. J Surg Res 157(1):e79–e86. doi:10.1016/j.jss.2009.04.008 PubMedCrossRefGoogle Scholar
  13. 13.
    Harrell AG, Novitsky YW, Kercher KW, Foster M, Burns JM, Kuwada TS, Heniford BT (2006) In vitro infectability of prosthetic mesh by methicillin-resistant Staphylococcus aureus. Hernia 10(2):120–124. doi:10.1007/s10029-005-0056-0 PubMedCrossRefGoogle Scholar
  14. 14.
    Nyame TT, Lemon KP, Kolter R, Liao EC (2011) High-throughput assay for bacterial adhesion on acellular dermal matrices and synthetic surgical materials. Plast Reconstr Surg 128(5):1061–1068. doi:10.1097/PRS.0b013e31822b65af PubMedCrossRefGoogle Scholar
  15. 15.
    Duarte PM, Reis AF, de Freitas PM, Ota-Tsuzuki C (2009) Bacterial adhesion on smooth and rough titanium surfaces after treatment with different instruments. J Periodontol 80(11):1824–1832. doi:10.1902/jop.2009.090273 PubMedCrossRefGoogle Scholar
  16. 16.
    Henry-Stanley MJ, Shepherd MM, Wells CL, Hess DJ (2010) Selected factors affecting Staphylococcus aureus within silastic catheters. J Surg Res 161(2):202–208. doi:10.1016/j.jss.2009.07.025 PubMedCrossRefGoogle Scholar
  17. 17.
    van Heerden J, Turner M, Hoffmann D, Moolman J (2009) Antimicrobial coating agents: can biofilm formation on a breast implant be prevented? J Plast Reconstr Aesthet Surg 62(5):610–617. doi:10.1016/j.bjps.2007.09.044 PubMedCrossRefGoogle Scholar
  18. 18.
    Sanders DL, Bond P, Moate R, Steer JA (2012) Design and validation of a novel quantitative method for rapid bacterial enumeration using programmed stage movement scanning electron microscopy. J Microbiol Methods 91(3):544–550. doi:10.1016/j.mimet.2012.09.027 PubMedCrossRefGoogle Scholar
  19. 19.
    Banche G, Roana J, Mandras N, Amasio M, Gallesio C, Allizond V, Angeretti A, Tullio V, Cuffini AM (2007) Microbial adherence on various intraoral suture materials in patients undergoing dental surgery. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 65(8):1503–1507. doi:10.1016/j.joms.2006.10.066 CrossRefGoogle Scholar
  20. 20.
    Edmiston CE, Seabrook GR, Goheen MP, Krepel CJ, Johnson CP, Lewis BD, Brown KR, Towne JB (2006) Bacterial adherence to surgical sutures: can antibacterial-coated sutures reduce the risk of microbial contamination? J Am Coll Surg 203(4):481–489. doi:10.1016/j.jamcollsurg.2006.06.026 PubMedCrossRefGoogle Scholar
  21. 21.
    Masini BD, Stinner DJ, Waterman SM, Wenke JC (2011) Bacterial adherence to suture materials. J Surg Educ 68(2):101–104. doi:10.1016/j.jsurg.2010.09.015 PubMedCrossRefGoogle Scholar
  22. 22.
    Champault G, Torcivia A, Paolino L, Chaddad W, Lacaine F, Barrat C (2011) A self-adhering mesh for inguinal hernia repair: preliminary results of a prospective, multicenter study. Hernia. doi:10.1007/s10029-011-0843-8 PubMedGoogle Scholar
  23. 23.
    Chastan P (2009) Tension-free open hernia repair using an innovative self-gripping semi-resorbable mesh. Hernia 13(2):137–142. doi:10.1007/s10029-008-0451-4 PubMedCrossRefGoogle Scholar
  24. 24.
    Garcia Urena MA, Hidalgo M, Feliu X, Velasco MA, Revuelta S, Gutierrez R, Utrera A, Porrero JL, Marin M, Zaragoza C (2011) Multicentric observational study of pain after the use of a self-gripping lightweight mesh. Hernia. doi:10.1007/s10029-011-0811-3 Google Scholar
  25. 25.
    Hollinsky C, Kolbe T, Walter I, Joachim A, Sandberg S, Koch T, Rulicke T (2009) Comparison of a new self-gripping mesh with other fixation methods for laparoscopic hernia repair in a rat model. J Am Coll Surg 208(6):1107–1114. doi:10.1016/j.jamcollsurg.2009.01.046 PubMedCrossRefGoogle Scholar
  26. 26.
    Sanders DL, Kingsnorth AN, Lambie J, Bond P, Moate R, Steer JA (2012) An experimental study exploring the relationship between the size of bacterial inoculum and bacterial adherence to prosthetic mesh. Surg EndoscGoogle Scholar
  27. 27.
    Collins CH (2004) Collins and Lyne’s microbiological methods. In: Collins CH, et al., 8th edn. Arnold, LondonGoogle Scholar
  28. 28.
    Sanders DL, Kingsnorth AN, Lambie J, Bond P, Moate R, Steer JA (2013) An experimental study exploring the relationship between the size of bacterial inoculum and bacterial adherence to prosthetic mesh. Surg Endosc 27(3):978–985. doi:10.1007/s00464-012-2545-4 PubMedCrossRefGoogle Scholar
  29. 29.
    An YH, Friedman RJ (2000) Handbook of bacterial adhesion: principles, methods, and applications. Humana, TotowaCrossRefGoogle Scholar
  30. 30.
    Gottenbos B, Busscher HJ, Van Der Mei HC, Nieuwenhuis P (2002) Pathogenesis and prevention of biomaterial centered infections. J Mater Sci Mater Med 13(8):717–722 (pii: 5094771)PubMedCrossRefGoogle Scholar
  31. 31.
    Engelsman AF, van Dam GM, van der Mei HC, Busscher HJ, Ploeg RJ (2010) In vivo evaluation of bacterial infection involving morphologically different surgical meshes. Ann Surg 251(1):133–137. doi:10.1097/SLA.0b013e3181b61d9a PubMedCrossRefGoogle Scholar
  32. 32.
    Engelsman AF, van der Mei HC, Busscher HJ, Ploeg RJ (2008) Morphological aspects of surgical meshes as a risk factor for bacterial colonization. Br J Surg 95(8):1051–1059. doi:10.1002/bjs.6154 PubMedCrossRefGoogle Scholar
  33. 33.
    Klinge U, Junge K, Spellerberg B, Piroth C, Klosterhalfen B, Schumpelick V (2002) Do multifilament alloplastic meshes increase the infection rate? Analysis of the polymeric surface, the bacteria adherence, and the in vivo consequences in a rat model. J Biomed Mater Res 63(6):765–771. doi:10.1002/jbm.10449 PubMedCrossRefGoogle Scholar
  34. 34.
    Stremitzer S, Bachleitner-Hofmann T, Gradl B, Gruenbeck M, Bachleitner-Hofmann B, Mittlboeck M, Bergmann M (2010) Mesh graft infection following abdominal hernia repair: risk factor evaluation and strategies of mesh graft preservation. A retrospective analysis of 476 operations. World J Surg 34(7):1702–1709. doi:10.1007/s00268-010-0543-z PubMedCrossRefGoogle Scholar
  35. 35.
    Cobb WS, Carbonell AM, Kalbaugh CL, Jones Y, Lokey JS (2009) Infection risk of open placement of intraperitoneal composite mesh. Am Surg 75(9):762–767 (discussion 767–768)PubMedGoogle Scholar
  36. 36.
    Katz S, Izhar M, Mirelman D (1981) Bacterial adherence to surgical sutures. A possible factor in suture induced infection. Ann Surg 194(1):35–41PubMedCrossRefGoogle Scholar
  37. 37.
    Kingsnorth A, Gingell-Littlejohn M, Nienhuijs S, Schule S, Appel P, Ziprin P, Eklund A, Miserez M, Smeds S (2012) Randomized controlled multicenter international clinical trial of self-gripping Parietex ProGrip polyester mesh versus lightweight polypropylene mesh in open inguinal hernia repair: interim results at 3 months. Hernia. doi:10.1007/s10029-012-0900-y Google Scholar
  38. 38.
    Haddad FS, Masri BA, Campbell D, McGraw RW, Beauchamp CP, Duncan CP (2000) The PROSTALAC functional spacer in two-stage revision for infected knee replacements. Prosthesis of antibiotic-loaded acrylic cement. J Bone Jt Surg Br Vol 82(6):807–812CrossRefGoogle Scholar
  39. 39.
    Lucke M, Schmidmaier G, Sadoni S, Wildemann B, Schiller R, Haas NP, Raschke M (2003) Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Bone 32(5):521–531PubMedCrossRefGoogle Scholar
  40. 40.
    Troy MG, Dong QS, Dobrin PB, Hecht D (1996) Do topical antibiotics provide improved prophylaxis against bacterial growth in the presence of polypropylene mesh? Am J Surg 171(4):391–393. doi:10.1016/S0002-9610(97)89616-X PubMedCrossRefGoogle Scholar
  41. 41.
    Law NW (1990) A comparison of polypropylene mesh, expanded polytetrafluoroethylene patch and polyglycolic acid mesh for the repair of experimental abdominal wall defects. Acta Chir Scand 156(11–12):759–762PubMedGoogle Scholar
  42. 42.
    Bleichrodt RP, Simmermacher RK, van der Lei B, Schakenraad JM (1993) Expanded polytetrafluoroethylene patch versus polypropylene mesh for the repair of contaminated defects of the abdominal wall. Surg Gynecol Obstet 176(1):18–24PubMedGoogle Scholar
  43. 43.
    Bellon JM, Contreras LA, Bujan J (2000) Ultrastructural alterations of polytetrafluoroethylene prostheses implanted in abdominal wall provoked by infection: clinical and experimental study. World J Surg 24(5):528–531 (discussion 532)PubMedCrossRefGoogle Scholar
  44. 44.
    Bellon JM, Garcia-Carranza A, Garcia-Honduvilla N, Carrera-San Martin A, Bujan J (2004) Tissue integration and biomechanical behaviour of contaminated experimental polypropylene and expanded polytetrafluoroethylene implants. Br J Surg 91(4):489–494. doi:10.1002/bjs.4451 PubMedCrossRefGoogle Scholar
  45. 45.
    Taylor SG, O’Dwyer PJ (1999) Chronic groin sepsis following tension-free inguinal hernioplasty. Br J Surg 86(4):562–565. doi:10.1046/j.1365-2168.1999.01072.x PubMedCrossRefGoogle Scholar
  46. 46.
    Leber GE, Garb JL, Alexander AI, Reed WP (1998) Long-term complications associated with prosthetic repair of incisional hernias. Arch Surg 133(4):378–382PubMedCrossRefGoogle Scholar
  47. 47.
    Kinnari TJ, Esteban J, Martin-de-Hijas NZ, Sanchez-Munoz O, Sanchez-Salcedo S, Colilla M, Vallet-Regi M, Gomez-Barrena E (2009) Influence of surface porosity and pH on bacterial adherence to hydroxyapatite and biphasic calcium phosphate bioceramics. J Med Microbiol 58(Pt 1):132–137. doi:10.1099/jmm.0.002758-0 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2013

Authors and Affiliations

  • D. Sanders
    • 1
    • 4
  • J. Lambie
    • 2
  • P. Bond
    • 2
  • R. Moate
    • 2
  • J. A. Steer
    • 1
    • 3
  1. 1.Peninsula College of Medicine and DentistryPlymouthUK
  2. 2.Plymouth Electron Microscopy CentrePlymouth UniversityPlymouthUK
  3. 3.Department of MicrobiologyDerriford HospitalPlymouthUK
  4. 4.Department of Upper GI SurgeryThe Royal Cornwall HospitalTruroUK

Personalised recommendations