, Volume 12, Issue 4, pp 351–358 | Cite as

Blood vessel matrix: a new alternative for abdominal wall reconstruction

  • C. F. Bellows
  • W. Jian
  • M. K. McHale
  • D. Cardenas
  • J. L. West
  • S. P. Lerner
  • G. E. Amiel
Original Article



Biologic matrices offer a new approach to the management of abdominal wall defects when the use of other foreign material is not ideal. A member of our team (GEA) developed a biological decellularized matrix generated from harvested blood vessels of swine blood vessel matrix (BVMx). The aim of our study was to investigate whether this novel collagen-based biological matrix is safe and effective for the repair of abdominal wall hernia defects in a rat model.


Full thickness abdominal wall defects were created in rats and repaired with our BVMx. After implantation as an underlay for 30 and 90 days, animals were sacrificed and the implanted material evaluated for herniation, adhesions, breaking strength, inflammation, and revascularization.


No evidence of herniation was noted at 30 (n = 7) or 90 (n = 7) days after repair. Adhesions, if present, were filmy and easily separated. The mean area of visceral adhesions to the BVMx was 18.9 ± 11.0% at 30 days and 7.1 ± 3.1% at 90 days post implantation (P = 0.33). The breaking strength of the BVMx–fascial interface was 4.5 ± 0.8 N at 30 days and 4.5 ± 2.4 N at 90 days post implantation (P = 0.98). Histologic analysis demonstrated that the BVMx elicited a mild transient inflammatory response and supported fibroblast migration, deposition of newly formed collagen, and neovascularization.


These data confirm that this BVMx supports vascular ingrowth and provides adequate strength for the repair of abdominal wall defects. Future studies in a large animal model are required to assess its validity for human application.


Abdominal wall reconstruction Biologic matrix Tissue engineering Hernia 


  1. 1.
    Luijendijk RW, Hop WC, van den Tol P et al (2000) A comparison of suture repair with mesh repair for incisional hernia. N Engl J Med 343:392–398PubMedCrossRefGoogle Scholar
  2. 2.
    Burgery JW, Luijendijk RW, Hop WC et al (2004) Long-term follow-up of a randomized controlled trial of suture vs. mesh repair for incisional hernias. Ann Surg 240:578–585. doi:10.1097/01.sla.0000141193.08524.e7 Google Scholar
  3. 3.
    Klinge U, Klosterhalfen B, Muller M et al (1999) Foreign body reaction to meshes used for the repair of abdominal wall hernias. Eur J Surg 165:665–673PubMedCrossRefGoogle Scholar
  4. 4.
    Bleichrodt RP, Simmermacher RK, van der Lei B et al (1993) Expanded polytetrafluoroethylene patch versus polypropylene mesh for the repair of contaminated defects of the abdominal wall. Surg Gynecol Obstet 176:18–24PubMedGoogle Scholar
  5. 5.
    Eid GM, Prince JM, Mattar SG et al (2003) Medium-term follow-up confirms the safety and durability of laparoscopic ventral hernia repair with PTFE. Surgery 134:599–604. doi:10.1016/S0039-6060(03)00283-6 PubMedCrossRefGoogle Scholar
  6. 6.
    Leber GE, Garb JL, Alexander AI et al (1998) Long-term complications associated with prosthethics repair of incisional hernia. Arch Surg 133:378–382PubMedCrossRefGoogle Scholar
  7. 7.
    Nahabedian MY (2007) Does AlloDerm stretch? Plast Reconstr Surg 120:1276–1280. doi:10.1097/01.prs.0000279342.48795.9a PubMedGoogle Scholar
  8. 8.
    Helton WS, Fisichella PM, Berger R et al (2005) Short-term outcomes with small intestinal submucosa for ventral abdominal hernia. Arch Surg 140:549–560PubMedCrossRefGoogle Scholar
  9. 9.
    Ko R, Kazacos EA, Snyder S et al (2006) Tensile strength comparison of small intestinal submucosa body wall repair. J Surg Res 135:9–17. doi:10.1016/j.jss.2006.02.007 PubMedCrossRefGoogle Scholar
  10. 10.
    Petter-Puchner AH, Fortelny RH, Mittermayr R et al (2006) Adverse effects of porcine small intestine submucosa implants in experimental ventral hernia repair. Surg Endosc 20:942–946. doi:10.1007/s00464-005-0568-9 PubMedCrossRefGoogle Scholar
  11. 11.
    Gaertner WB, Bonsack ME, Delaney JP (2007) Experimental evaluation of four biologic prostheses for ventral hernia repair. J Gastrointest Surg 11:1275–1285PubMedCrossRefGoogle Scholar
  12. 12.
    Kaushal S, Amiel GE, Guleserian KJ et al (2001) Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nature Med 7:1035–1040PubMedCrossRefGoogle Scholar
  13. 13.
    Amiel GE, Yu RN, Shu T et al (2006) Head-to-head comparison of urodynamics and histology of rat bladders augmented with blood vessel matrix versus small intestine submucosa. Society of Biomaterials 35th Annual Meeting, PittsburghGoogle Scholar
  14. 14.
    Amiel GE, Komura M, Shapira O et al (2006) Engineering of blood vessels from acellular collagen matrices coated with human endothelial cells. Tissue Eng 12:1–11CrossRefGoogle Scholar
  15. 15.
    Demir U, Mihmanli M, Coskun H et al (2005) Comparison of prosthetic materials in incisional hernia repair. Surg Today 35:223–227. doi:10.1007/s00595-004-2907-1 PubMedCrossRefGoogle Scholar
  16. 16.
    Blauer KL, Collins RL (1988) The effect of intraperitoneal progesterone on postoperative adhesions formation in rabbits. Fertil Steril 49:144–149PubMedGoogle Scholar
  17. 17.
    Badylak S, Kokini K, Tullius B et al (2002) Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res 103:190–202. doi:10.1006/jsre.2001.6349 PubMedCrossRefGoogle Scholar
  18. 18.
    Cobb GA, Shaffer J (2005) Cross-linked acellular porcine dermal collagen implant in laparoscopic ventral hernia repair: case-controlled study of operative variables and early complications. Int Surg 90:S24–S29PubMedGoogle Scholar
  19. 19.
    McGinty JO, Hogle NJ, McCarthy H et al (2005) A comparison study of adhesion formation and abdominal wall integrity after laparoscopic ventral hernia repair in a porcine model using multiple types of mesh. Surg Endo. doi:10.1007/s00464-004-8174-9
  20. 20.
    Butler CE, Prieto VG (2004) Reduction of adhesions with composite alloderm/polypropylene mesh implants for abdominal wall reconstruction. Plast Reconstr Surg 114:464–473PubMedCrossRefGoogle Scholar
  21. 21.
    Soiderer EE, Lantz GG, Kazacos EA et al (2004) Morphologic study of three collagen materials for body wall repair. J Surg Res 118:161–175. doi:10.1016/S0022-4804(03)00352-4 PubMedCrossRefGoogle Scholar
  22. 22.
    Clarke KM, Lantz GC, Salisbury K et al (1996) Intestine submucosa and polypropylene mesh for abdominal wall repair in dogs. J Surg Res 60:107–114PubMedCrossRefGoogle Scholar
  23. 23.
    Konstantinovic ML, Lagae P, Zheng F et al (2005) Comparison of host response to polypropylene and non-cross-linked porcine small intestine serosal-derived collagen implants in a rat model. Int J Obstet Gyn 112:1554–1560. doi:10.1111/j.1471-0528.2005.00688 CrossRefGoogle Scholar
  24. 24.
    Kaya M, Baba FR, Bolukbas F et al (2006) Use of homologous acellular dermal matrix for abdominal wall reconstruction in rats. J Invest Surg 19:11–17PubMedCrossRefGoogle Scholar
  25. 25.
    Cobb WC, Burns JM Kercher KW et al (2005) Normal intraabdominal pressure in healthy adults. J Surg Res 129:231–235. doi:10.1016/jss.2005.06.015 PubMedCrossRefGoogle Scholar
  26. 26.
    Choe JM, Kothandapani R, James L et al (2001) Autologous, cadaveric, and synthetic materials used in sling surgery: comparative biomechanical analysis. Urology 58:482–486PubMedCrossRefGoogle Scholar
  27. 27.
    Badylak S, Kokini K, Tullius B et al (2001) Strength over time of a resorbable bioscaffold for body wall repair in a dog model. J Surg Res 99:282–287. doi: 10.1006/jsre.2001.6176 PubMedCrossRefGoogle Scholar
  28. 28.
    Menom NG, Rodriguez ED, Byrnes CK et al (2003) Revascularization of human acellular dermis in full-thickness abdominal wall reconstruction in the rabbit model. Ann Plast Surg 50:523–527CrossRefGoogle Scholar
  29. 29.
    Silverman RP, Li EN, Holton LH et al (2004) Ventral hernia repair using allogenic acellular dermal matrix in a swine model. Hernia 8:336–342PubMedCrossRefGoogle Scholar
  30. 30.
    Macleod TM, Williams G, Sanders R et al (2005) Histologic evaluation of Permacol as a subcutaneous implant over a 20 week period in the rat model. Br J Plast Surg 58:518–532. doi:10.1016/j.bjps.2004.12.012 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • C. F. Bellows
    • 1
    • 4
  • W. Jian
    • 2
  • M. K. McHale
    • 3
  • D. Cardenas
    • 2
  • J. L. West
    • 3
  • S. P. Lerner
    • 2
  • G. E. Amiel
    • 2
  1. 1.Department of SurgeryBaylor College of MedicineHoustonUSA
  2. 2.Department of UrologyBaylor College of MedicineHoustonUSA
  3. 3.Department of BioengineeringRice UniversityHoustonUSA
  4. 4.General Surgery and Minimally Invasive Surgery, Division of Surgical ResearchTulane University Health Sciences CenterNew OrleansUSA

Personalised recommendations