, Volume 10, Issue 3, pp 218–222 | Cite as

Adhesion formation and reherniation differ between meshes used for abdominal wall reconstruction

  • C. J. J. M. Sikkink
  • T. S. Vries de Reilingh
  • A. W. Malyar
  • J. A. Jansen
  • R. P. Bleichrodt
  • H. van Goor
Original Article


Incisional hernia is a common surgical problem, frequently requiring prosthetic mesh repair. The demands of the ideal mesh seem conflicting; ingrowth at the mesh–fascia interface, without development of adhesions at the visceral mesh surface. Various antiadhesives combined with macroporous mesh and composite meshes were studied for prevention of adhesions to mesh and ingrowth into the fascia. In 60 rats an abdominal wall defect was created and repaired with underlay mesh. Rats were divided into six groups and treated with polypropylene mesh (PPM, control), PPM with auto-cross-linked polymers (ACP) gel, PPM with fibrinogen glue (FG), polypropylene/expanded polytetrafluoroethylene (ePTFE) mesh, polypropylene/sodium hyaluronate/carboxymethylcellulose (HA/CMC) mesh, and polypropylene-collagen/polyethylene-glycol/glycerol (CPGG) mesh. Mesh infection was assessed in the postoperative period, adhesions and reherniations were scored at sacrifice 2 months after operation, and tensile strength of the mesh–tissue interface was measured. Six rats developed mesh infection, half of them were treated with PPM/ePTFE. The PPM/HA/CMC group showed a significant reduction in the amount and severity of adhesions. In animals treated with PPM/ACP and PPM/FG, severity of adhesions was reduced as well. Reherniation rate in the PPM/ACP group was 50% and significantly higher than that in other groups. Rats in the PPM/HA/CMC had the highest tensile strength. PPM/HA/CMC approaches the demands of the ideal mesh best, having superior antiadhesive properties, no reherniation and no infection in this rat model of incisional hernia.


Adhesions Antiadhesives Abdominal wall hernia (Composite) mesh Experimental Rats 


  1. 1.
    Mudge M, Hughes LE (1985) Incisional hernia: a 10 year prospective study of incidence and attitudes. Br J Surg 72:70–71PubMedCrossRefGoogle Scholar
  2. 2.
    Wissing J, van Vroonhoven TJ, Schattenkerk ME, Veen HF, Ponsen RJ, Jeekel J (1987) Fascia closure after midline laparotomy: results of a randomized trial. Br J Surg 74:738–741PubMedCrossRefGoogle Scholar
  3. 3.
    Bellón JM, Buján J, Contreras LA, Carrera-San Martin A, Jurado F (1986) Comparison of a new type of polytetrafluoroethylene patch (mycro mesh) and polypropylene prosthesis (marlex) for repair of abdominal wall defects. J Am Coll Surg 183:11–18Google Scholar
  4. 4.
    Baptista ML, Bonsack ME, Delaney JP (2000) Seprafilm reduces adhesions to polypropylene mesh. Surgery 128:86–92CrossRefPubMedGoogle Scholar
  5. 5.
    Van ‘t Riet M, de Vos van Steenwijk PJ, Bonthuis F, Marquet RL, Steyerberg EW, Jeekel J, Bonjer HJ (2003) Prevention of adhesion to prosthetic mesh. Ann Surg 237:123–128PubMedCrossRefGoogle Scholar
  6. 6.
    Bleichrodt RP, Simmermacher RKJ, van der Lei B, Schakenraad JM (1993) Expanded polytetrafluoroethylene patch versus polypropylene mesh for the repair of contaminated defects of the abdominal wall. Surg Gynecol Obstet 176:18–24PubMedGoogle Scholar
  7. 7.
    Simmermacher RKJ, Schakenraad JM, Bleichrodt RP (1994) Reherniation after repair of the abdominal wall with expanded polytetrafluoroethylene. J Am Coll Surg 178:613–616PubMedGoogle Scholar
  8. 8.
    Bellón JM, García-Carranza A, Jurado F, García-Honduvilla N, Carrera-San Martin A, Buján J (2001) Peritoneal regeneration after implant of a composite prosthesis in the abdominal wall. World J Surg 25:147–152CrossRefPubMedGoogle Scholar
  9. 9.
    Cobb WS, Harris JB, Lokey JS, McGill ES, Klove KL (2003) Incisional herniorrhaphy with intraperitoneal composite mesh: a report of 95 cases. Am Surg 69:784–787PubMedGoogle Scholar
  10. 10.
    Hooker GD, Taylor BM, Driman DK (1999) Prevention of adhesion formation with use of sodium hyaluronate-based bioresorbable membrane in a rat model of ventral hernia repair with polypropylene mesh—a randomized, controlled study. Surgery 125:211–216PubMedGoogle Scholar
  11. 11.
    Greenawalt KE, Butler TJ, Rowe EA, Finneral AC, Garlick DS, Burns JW (2000) Evaluation of Sepramesh biosurgical composite in a rabbit hernia repair model. J Surg Res 94:92–98CrossRefPubMedGoogle Scholar
  12. 12.
    Butler CE, Navarro FA, Orgill DP (2001) Reduction of abdominal adhesions using composite collagen-GAC implants for ventral hernia repair. J Biomed Mater Res 58:75–80CrossRefPubMedGoogle Scholar
  13. 13.
    De Vries Reilingh TS, van Geldere D, Langenhorst B, de Jong D, van der Wilt GJ, van Goor H, Bleichrodt RP (2004) Repair of large midline incisional hernias with polypropylene mesh: comparison of three operative techniques. Hernia 8:56–59CrossRefPubMedGoogle Scholar
  14. 14.
    Zühlke HV, Lorenz EMP, Straub EM, Savvas V (1990) Pathophysiologie und Klassifikation von Adhäsionen. Langenbecks Arch Chir Suppl II Verh Dtsch Chir 345:1009–1016Google Scholar
  15. 15.
    Becker JM, Dayton MT, Fazio VW, Beck DE, Stryker SJ, Wexner SD, Wolff BG, Roberts PL, Smith LE, Sweeney SA, Moore M (1996) Prevention of postoperative abdominal adhesions by a sodium hyaluronate-based bioresorbable membrane: a prospective, randomized, double-blind multicenter study. J Am Coll Surg 183:297–306PubMedGoogle Scholar
  16. 16.
    Reijnen MMPJ, Skrabut EM, Postma VA, Burns JW, van Goor H (2001) Polyanionic polysaccharides reduce intra-abdominal adhesion and abscess formation in a rat peritonitis model. J Surg Res 101:248–253CrossRefPubMedGoogle Scholar
  17. 17.
    Reijnen MMPJ, Falk P, van Goor H, Holmdahl L (2000) The antiadhesive agent sodium hyaluronate increases the proliferation rate of human peritoneal mesothelial cells. Fertil Steril 74:146–151CrossRefPubMedGoogle Scholar
  18. 18.
    Reijnen MMPJ, van Goor H, Falk P, Hedgren M, Holmdahl L (2001) Sodium hyaluronate increases the fibrinolytic response of human peritoneal mesothelial cells exposed to TNF-α. Arch Surg 136:291–296CrossRefPubMedGoogle Scholar
  19. 19.
    Bellón JM, García-Honduvilla N, Jurado F, Garcia-Carranza A, Garcia-Moreno F, Martin AC, Bujan J (2001) Use of composite prostheses in the repair of defects in the abdominal wall: prosthetic behaviour at the peritoneum. Eur J Surg 167:666–671CrossRefPubMedGoogle Scholar
  20. 20.
    De Iaco PA, Stefanetti M, Pressato D, Piana S, Donà M, Pavesio A, Bovicelli L (1998) A novel hyaluronan-based gel in laparoscopic adhesion prevention: preclinical evaluation in an animal model. Fertil Steril 69:318–323CrossRefPubMedGoogle Scholar
  21. 21.
    Koçak I, Ünlü C, Akçan Y, Yakin K (1999) Reduction of adhesion formation with cross-linked hyaluronic acid after peritoneal surgery in rats. Fertil Steril 72:873–878CrossRefPubMedGoogle Scholar
  22. 22.
    Belluco C, Meggiolaro F, Pressato D, Pavesio A, Bigon E, Donà M, Forlin M, Nitti D, Lise M (2001). Prevention of postsurgical adhesions with an autocrosslinked hyaluronan derivative gel. J Surg Res 100:217–221CrossRefPubMedGoogle Scholar
  23. 23.
    Lindenberg S, Lauritsen JG (1984) Prevention of peritoneal adhesion formation by fibrin sealant. Ann Chir Gyn 73:11–13Google Scholar
  24. 24.
    De Virgilio C, Dubrow T, Sheppard BB, MacDonald WD, Nelson RJ, Lesavoy MA, Robertson JM (1990) Fibrin glue inhibits intra-abdominal adhesion formation. Arch Surg 125:1378–1382PubMedGoogle Scholar
  25. 25.
    Holmdahl L (1997) The role of fibrinolysis in adhesion formation. Eur J Surg Suppl 577:24–31PubMedGoogle Scholar
  26. 26.
    Reijnen MMPJ, Bleichrodt RP, van Goor H (2003) Pathophysiology of intra-abdominal adhesion and abscess formation, and the effect of hyaluronan. Br J Surg 90:533–541CrossRefPubMedGoogle Scholar
  27. 27.
    Bellón JM, Buján J, Contreras LA, Hernando A (1995) Integration of biomaterials implanted into abdominal wall: process of scar formation and macrophage response. Biomaterials 16:381–387CrossRefPubMedGoogle Scholar
  28. 28.
    Van Goor H, Bom VJ, van der Meer J, Sluiter WJ, Geerards S, van der Schaaf W, de Graaf JS, Bleichrodt RP (1996) Pharmacokinetics of human recombinant tissue-type plasminogen activator, administered intra-abdominally, in a rat peritonitis model. Eur Surg Res 28:287–294PubMedCrossRefGoogle Scholar
  29. 29.
    Bertram P, Tietze L, Hoopmann M, Treutner KH, Mittermayer C, Schumpelick V (1999) Intraperitoneal transplantation of isologous mesothelial cells for prevention of adhesions. Eur J Surg 165:705–709CrossRefPubMedGoogle Scholar
  30. 30.
    Yahara N, Abe T, Morita K, Tangoku A, Oka M (2002) Comparison of interleukin-6, interleukin-8, and granulocyte colony-stimulating factor production by the peritoneum in laparoscopic and open surgery. Surg Endosc 16:1615–1619CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • C. J. J. M. Sikkink
    • 1
  • T. S. Vries de Reilingh
    • 1
  • A. W. Malyar
    • 1
  • J. A. Jansen
    • 2
  • R. P. Bleichrodt
    • 1
  • H. van Goor
    • 1
  1. 1.Department of SurgeryRadboud University Nijmegen Medical CenterNijmegenThe Netherlands
  2. 2.Department of BiomaterialsRadboud University Nijmegen Medical CenterNijmegenThe Netherlands

Personalised recommendations