Skip to main content

Advertisement

Log in

Grasslands Maintain Stability in Productivity Through Compensatory Effects and Dominant Species Stability Under Extreme Precipitation Patterns

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Extreme climatic events are likely to intensify under climate change and can have different effects on ecosystems depending on their timing and magnitude. Understanding how productivity responds to extreme precipitation patterns requires assessing stability and vulnerability during critical growing periods at the plant community level. In this study, we experimentally imposed two contrasting types of extreme precipitation patterns, including extreme drought (excluding all rainfall for 30 consecutive days) during early-, mid-, and late-stages of the growing season, and heavy rainfall (adding 14.1 mm of rainfall every day for 20 consecutive days) during mid- and late-stages of the growing season over four years (2013–2016) in a steppe community in Inner Mongolia, China. We found that extreme drought and heavy rainfall had no effect on community aboveground net primary productivity (ANPP), species richness, and dominance at any stage of the growing season. Community stability in response to extreme drought was mainly driven by compensation among species and the stability of dominant species, while the compensatory effect among species and functional groups, and the stability of dominant species contributed to the community stability in response to heavy rainfall. Overall, our findings indicate that the responses of the ecosystem to intra-seasonal contrasting extreme precipitation patterns can be driven by similar stability mechanisms and suggest that semiarid temperate steppe communities may have strong initial resistance to more frequent extreme climatic events in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bai Y, Han X, Wu J, Chen Z, Li L. 2004. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431:181–184.

    Article  CAS  PubMed  Google Scholar 

  • Bao Y, Cao M, Li Z, Guo P, Zhang J, Qin J. 2019. A comparative study of the response of Leymus chinensis and Stipa grandis root characteristics to moisture grdients. Acta Ecol Sinica 39:1063–1070. (in Chinese).

    Google Scholar 

  • Cherwin K, Knapp A. 2012. Unexpected patterns of sensitivity to drought in three semi-arid grasslands. Oecologia 169:845–852.

    Article  PubMed  Google Scholar 

  • Christensen L, Coughenour MB, Ellis JE, Chen ZZ. 2004. Vulnerability of the Asian typical steppe to grazing and climatic change. Climatic Change 63:351–368.

    Article  CAS  Google Scholar 

  • Cipriotti PA, Flombaum P, Sala OE, Aguiar MR. 2008. Does drought control emergence and survival of grass seedlings in semi-arid rangelands? An example with a Patagonian species. J Arid Environ 72:162–174.

    Article  Google Scholar 

  • Collins SL, Suding KN, Cleland EE, Batty M, Pennings SC, Gross KL. 2008. Rank clocks and plant community dynamics. Ecology 89:3534–3541.

    Article  PubMed  Google Scholar 

  • Connell SD, Ghedini G. 2015. Resisting regime-shifts: The stabilising effect of compensatory processes. Trends Ecol Evol 30:513–515.

    Article  PubMed  Google Scholar 

  • Cottingham KC, Brown BL, Lennon JT. 2001. Biodiversity may regulate the temporal variability of ecological systems. Ecol Lett 4:72–85.

    Article  Google Scholar 

  • De Boeck HJ, Dreesen FE, Janssens IA, Nijs I. 2011. Whole-system responses of experimental plant communities to climate extremes imposed in different seasons. New Phytol 189:806–817.

    Article  PubMed  Google Scholar 

  • Donat MG, Lowry AL, Alexander LV, O’Gorman PA, Maher N. 2016. More extreme precipitation in the world’s dry and wet regions. Nat Clim Change 6:508–513.

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO. 2000. Climate extremes: observations, modeling, and impacts. Science 289:2068–2074.

    Article  CAS  PubMed  Google Scholar 

  • Ernest SKM, Brown JH. 2001. Homeostasis and compensation: the role of species and resources in ecosystem stability. Ecology 82:2118–2132.

    Article  Google Scholar 

  • Evans SE, Byrne KM, Lauenroth WK, Burke IC. 2011. Defining the limit to resistance in a drought-tolerant grassland: long-term severe drought significantly reduces the dominant species and increases ruderals. J Ecol 99:1500–1507.

    Article  Google Scholar 

  • Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL. 2003. Productivity responses to altered rainfall patterns in a C4-dominated grassland. Oecologia 137:245–251.

    Article  PubMed  Google Scholar 

  • Felton AJ, Smith MD. 2017. Integrating plant ecological responses to climate extremes from individual to ecosystem levels. Philos T R Soc B 372:20160142. https://doi.org/10.1098/rstb.2016.0142.

    Article  Google Scholar 

  • García-Palacios P, Gross N, Gaitán J, Maestre FT. 2018. Climate mediates the biodiversity-ecosystem stability relationship globally. PNAS 115:8400–8405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gherardi LA, Sala OE. 2015. Enhanced interannual precipitation variability increases plant functional diversity that in turn ameliorates negative impact on productivity. Ecol Lett 18:1293–1300.

    Article  PubMed  Google Scholar 

  • Gitlin AR, Sthultz CM, Bowker MA, Stumpf S, Paxton KL, Kennedy K, Muñoz A, Bailey JK, Whitham TG. 2006. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conserv Biol 20:1477–1486.

    Article  PubMed  Google Scholar 

  • Gonzalez A, Loreau M. 2009. The causes and consequences of compensatory dynamics in ecological community. Annu Rev Ecol Evol S 40:393–414.

    Article  Google Scholar 

  • Grant K, Kreyling J, Heilmeier H, Beierkuhnlein C, Jentsch A. 2014. Extreme weather events and plant–plant interactions: shifts between competition and facilitation among grassland species in the face of drought and heavy rainfall. Ecol Res 29:991–1001.

    Article  Google Scholar 

  • Grime JP, Fridley JD, Askew AP. 2008. Long-term resistance to simulated climate change in an infertile grassland. PNAS 105:10028–10032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grman E, Lau JA, Schoolmaster DR, Gross KL. 2010. Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecol Lett 13:1400–1410.

    Article  PubMed  Google Scholar 

  • Han R, Li X, Ren A, Gao Y. 2011. Physiological ecological effect of endophyte infection on Achantherum sibiricum under drought stress. Acta Ecol Sinica 31:2115–2123. (in Chinese).

    CAS  Google Scholar 

  • Hao Y, Wang Y, Mei X, Cui X, Zhou X, Huang X. 2010. The sensitivity of temperate steppe CO2 exchange to the quantity and timing of natural interannual rainfall. Ecol Inform 5:222–228.

    Article  Google Scholar 

  • Hao Y, Kang X, Wu X, Cui X, Liu W, Zhang H, Zhao H. 2013. Is frequency or amount of precipitation more important in controlling CO2 fluxes in the 30-year-old fenced and the moderately grazed temperate steppe? Agric Ecosyst Environ 171:63–71.

    Article  Google Scholar 

  • Hao Y, Zhou C, Liu W, Li L, Kang X, Jiang L, Cui X, Wang Y, Zhou X, Xu C. 2017. Aboveground net primary productivity and carbon balance remain stable under extreme precipitation events in a semiarid steppe ecosystem. Agric for Meteorol 240:1–9.

    Article  Google Scholar 

  • Hao Y, Zhang H, Biederman JA, Li L, Cui X, Xue K, Du J, Wang Y. 2018. Seasonal timing regulates extreme drought impacts on CO2 and H2O exchanges over semiarid steppes in Inner Mongolia, China. Agric Ecosyst Environ 266:153–166.

    Article  Google Scholar 

  • Hautier Y, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hillebrand H, Lind EM, MacDougall AS, Stevens CJ, Bakker JD, Buckley YM, Chu C, Collins SL, Daleo P, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Jin VL, Klein JA, Knops JMH, La Pierre KJ, Li W, McCulley RL, Melbourne BA, Moore JL, O’Halloran LR, Prober SM, Risch AC, Sankaran M, Schuetz M, Hector A. 2014. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508:521–525.

    Article  CAS  PubMed  Google Scholar 

  • Hoover DL, Knapp AK, Smith MD. 2014. Resistance and resilience of grassland ecosystem to climate extremes. Ecology 95:2646–2656.

    Article  Google Scholar 

  • Isbell FI, Polley HW, Wilsey BJ. 2009. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol Lett 12:443–451.

    Article  PubMed  Google Scholar 

  • Isbell F, Craven D, Connolly J, Loreau M, Schmid B, Beierkuhnlein C, Bezemer TM, Bonin C, Bruelheide H, de Luca E, Ebeling A, Griffin JN, Guo Q, Hautier Y, Hector A, Jentsch A, Kreyling J, Lanta V, Manning P, Meyer ST, Mori A, Naeem S, Niklaus PA, Polley HW, Reich PB, Roscher C, Seabloom EW, Smith MD, Thakur MP, Tilman D, Tracy BF, van der Putten WH, van Ruijven J, Weigelt A, Weisser WW, Wilsey B, Eisenhauer N. 2015. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526:574–577.

    Article  CAS  PubMed  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C. 2007. A new generation of climate change experiments: events, not trends. Front Ecol Environ 5:315–324.

    Article  Google Scholar 

  • Jentsch A, Kreyling J, Elmer M, Gellesch E, Glaser B, Grant K, Hein R, Lara M, Mirzae H, Nadler SE, Nagy L, Otieno D, Pritsch K, Rascher U, Schädler M, Schloter M, Singh BK, Stadler J, Walter J, Wellstein C, Wöllecke J, Beierkuhnlein C. 2011. Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J Ecol 99:689–702.

    Article  Google Scholar 

  • Jinali A. 2010. Analysis on characteristics of drought in Xilinhot During the last five decade. J Inner Mongolia Normal Univ (nat Sci Ed) 39:269–274. (in Chinese).

    Google Scholar 

  • Kaisermann A, de Vries FT, Griffiths RI, Bardgett RD. 2017. Legacy effects of drought on plant-soil feedbacks and plant-plant interactions. New Phytol 215:1413–1424.

    Article  CAS  PubMed  Google Scholar 

  • Knapp AK, Smith MD. 2001. Variation among biomes in temporal dynamics of aboveground primary production. Science 291:481–484.

    Article  CAS  PubMed  Google Scholar 

  • Lehman CL, Tilman D. 2000. Biodiversity, stability, and productivity in competitive communities. Am Nat 156:534–552.

    Article  PubMed  Google Scholar 

  • Lepš J. 2004. Variability in population and community biomass in a grassland community affected by environmental productivity and diversity. Oikos 107:64–71.

    Article  Google Scholar 

  • Li L, Fan W, Kang X, Wang Y, Cui X, Xu C, Griffin KL, Hao Y. 2016. Responses of greenhouse gas fluxes to climate extremes in a semiarid grassland. Atmos Environ 142:32–42.

    Article  CAS  Google Scholar 

  • Li L, Zheng Z, Biederman JA, Xu C, Xu Z, Che R, Wang Y, Cui X, Hao Y. 2019. Ecological responses to heavy rainfall depend on seasonal timing and multi-year recurrence. New Phytol 223:647–660.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zheng Z, Biederman JA, Qian R, Ran Q, Zhang B, Xu C, Wang F, Zhou S, Che R, Dong J, Xu Z, Cui X, Hao Y, Wang Y. 2020. Drought and heat wave impacts on grassland carbon cycling across hierarchical levels. Plant Cell Environ. https://doi.org/10.1111/pce.13767.

    Article  PubMed  Google Scholar 

  • Liu W, Li L, Biederman JA, Hao Y, Zhang H, Kang X, Cui X, Wang Y, Li M, Xu Z, Griffin KL, Xu C. 2017. Repackaging precipitation into fewer, larger storms reduces ecosystem exchanges of CO2 and H2O in a semiarid steppe. Agric for Meteorol 247:356–364.

    Article  Google Scholar 

  • Loreau M, de Mazancourt C. 2008. Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments. Am. Nat. 172:E48–E66.

    Article  PubMed  Google Scholar 

  • Loreau M, de Mazancourt C. 2013. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett 16:106–115.

    Article  PubMed  Google Scholar 

  • Ma Z, Liu H, Mi Z, Zhang Z, He J. 2017. Climate warming reduces the temporal stability of plant community biomass production. Nat Commun 8:15378. https://doi.org/10.1038/ncomms15378.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackie KA, Zeiter M, Bloor JMG, Stampfli A. 2019. Plant functional groups mediate drought resistance and recovery in a multisite grassland experiment. J Ecol 107:937–949.

    Article  CAS  Google Scholar 

  • Martin ER. 2018. Future projections of global pluvial and drought event characteristics. Geophys Res Lett 45:11913–11920.

    Article  Google Scholar 

  • Munson SM, Bunting EL, Bradford JB, Butterfield BJ, Gremer JR. 2019. Plant Production responses to precipitation differ along an elevation gradient and are enhanced under extremes. Ecosystems 22:699–708.

    Article  Google Scholar 

  • Muraina TO, Xu C, Yu Q, Yang Y, Jing M, Jia X, Jaman MS, Dam Q, Knapp AK, Collins S, Luo Y, Luo W, Zuo X, Xin X, Han X, Simth MD. 2021. Species asynchrony stabilises productivity under extreme drought across Northern China grasslands. J Ecol 109:1665–1675.

    Article  Google Scholar 

  • Niu S, Wu M, Han Y, Xia J, Li L, Wan S. 2008. Water-mediated responses of ecosystem C fluxes to climatic change in a temperate steppe. New Phytol 177:209–219.

    Article  CAS  PubMed  Google Scholar 

  • Noy-Meir I, Gutman M, Kaplan Y. 1989. Responses of Mediterranean grassland plants to grazing and protection. J Ecol 77:290–310.

    Article  Google Scholar 

  • Papalexiou SM, Montanari A. 2019. Global and Regional Increase of Precipitation Extremes under Global Warming. Water Resour Res 55:4901–4914.

    Article  Google Scholar 

  • Pfisterer AB, Schmid B. 2002. Diversity-dependent production can decrease the stability of ecosystem functioning. Nature 416:84–86.

    Article  CAS  PubMed  Google Scholar 

  • Polley HW, Wilsey BJ, Derner JD. 2007. Dominant species constrain effects of species diversity on temporal variability in biomass production of tallgrass prairie. Oikos 116:2044–2052.

    Article  Google Scholar 

  • Post AK, Knapp AK. 2019. Plant growth and aboveground production respond differently to late-season deluges in a semi-arid grassland. Oecologia 191:673–683.

    Article  PubMed  Google Scholar 

  • Prieto I, Violle C, Barre P, Durand JL, Ghesquiere M, Litrico I. 2015. Complementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat Plants 1:15033. https://doi.org/10.1038/nplants.2015.33.

    Article  CAS  PubMed  Google Scholar 

  • Ren H, Xu Z, Isbell F, Huang J, Han X, Wan S, Chen S, Wang R, Zeng DH, Jiang Y. 2017. Exacerbated nitrogen limitation ends transient stimulation of grassland productivity by increased precipitation. Ecol Monogr 87:457–469.

    Article  Google Scholar 

  • Sasaki T, Lauenroth WK. 2011. Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia 166:761–768.

    Article  PubMed  Google Scholar 

  • Sasaki T, Lu X, Hirota M, Bai Y. 2019. Species asynchrony and response diversity determine multifunctional stability of natural grasslands. J Ecol 107:1862–1875.

    Article  Google Scholar 

  • Scott AJ, Morgan JW. 2012. Germination strategies of annual forbs from south-eastern Australian semiarid grasslands. Aust J Bot 60:340–346.

    Article  Google Scholar 

  • Sippel S, Zscheischler J, Reichstein M. 2016. Ecosystem impacts of climate extremes crucially depend on the timing. PNAS 113:5768–5770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MD, Knapp AK. 2003. Dominant species maintain ecosystem function with non-random species loss. Ecol Lett 6:509–517.

    Article  Google Scholar 

  • Smith B, Wilson JB. 1996. A consumer’s guide to evenness indices. Oikos 76:70–82.

    Article  Google Scholar 

  • Smith MD, Knapp AK, Collins SL. 2009. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90:3279–3289.

    Article  PubMed  Google Scholar 

  • Song M, Yu F. 2015. Reduced compensatory effects explain the nitrogen-mediated reduction in stability of an alpine meadow on the Tibetan Plateau. New Phytol 207:70–77.

    Article  PubMed  Google Scholar 

  • Stampfli A, Bloor JMG, Fischer M, Zeiter M. 2018. High land-use intensity exacerbates shifts in grassland vegetation composition after severe experimental drought. Global Change Biol 24:2021–2034.

    Article  Google Scholar 

  • Sun J, Liu M, Li S, Hu Z, Sun X, Wen X, Zhang L. 2011. Survival strategy of Stipa krylovii and Agropyron cristatum in typical steppe of Inner Mongolia. Acta Ecol Sinica 31:2148–2158. (in Chinese).

    Google Scholar 

  • Sun G, Wang Z, Zhu-Barker X, Zhang N, Wu N, Liu L, Lei Y. 2016. Biotic and abiotic controls in determining exceedingly variable responses of ecosystem functions to extreme seasonal precipitation in a mesophytic alpine grassland. Agric for Meteorol 228–229:180–190.

    Article  Google Scholar 

  • Tilman D, Reich PB, Knops JMH. 2006. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632.

    Article  CAS  PubMed  Google Scholar 

  • Trenberth KE. 2011. Changes in precipitation with climate change. Clim Res 47:123–138.

    Article  Google Scholar 

  • Ummenhofer CC, Meehl GA. 2017. Extreme weather and climate events with ecological relevance: a review. Philos T R Soc B 372:20160135. https://doi.org/10.1098/rstb.2016.0135.

    Article  Google Scholar 

  • Unger S, Jongen M. 2015. Consequences of changing precipitation patterns for ecosystem functioning in grasslands: a review. In: Lüttge U, Beyschlag W, Eds. Progress in Botany, . Cham: Springer. pp 347–393.

    Chapter  Google Scholar 

  • van Rooijen NM, de Keersmaecker W, Ozinga WA, Coppin P, Hennekens SM, Schaminée JHJ, Somers B, Honnay O. 2015. Plant species diversity mediates ecosystem stability of natural dune grasslands in response to drought. Ecosystems 18:1383–1394.

    Article  Google Scholar 

  • Vetter VMS, Kreyling J, Dengler J, Apostolova I, Arfin-Khan MAS, Berauer BJ, Berwaers S, De Boeck HJ, Nijs I, Schuchardt MA, Sopotlieva D, von Gillhausen P, Wilfahrt PA, Zimmermann M, Jentsch A. 2020. Invader presence disrupts the stabilizing effect of species richness in plant community recovery after drought. Global Change Biol 26:3539–3551.

    Article  Google Scholar 

  • Voesenek L, Rijnders J, Peeters A, Van de Steeg H, De Kroon H. 2004. Plant hormones regulate fast shoot elongation under water: from genes to communities. Ecology 85:16–27.

    Article  Google Scholar 

  • Wagg C, O’Brien MJ, Vogel A, Scherer-Lorenzen M, Eisenhauer N, Schmid B, Weigelt A. 2017. Plant diversity maintains long-term ecosystem productivity under frequent drought by increasing short-term variation. Ecology 98:2952–2961.

    Article  PubMed  Google Scholar 

  • Wang Z, Zhang Q, Xin X, Ding Y, Hou X, Sarula Li X, Chen H, Yin Y, Hu J, Liu Z. 2014. Response of the annual biomass production of a typical steppe plant community to precipitation fluctuations. Rangeland J 36:527–534.

    Article  Google Scholar 

  • Wilcox KR, Koerner SE, Hoover DL, Borkenhagen AK, Burkepile DE, Collins SL, Hoffman AM, Kirkman KP, Knapp AK, Strydom T, Thompson DI, Smith MD. 2020. Rapid recovery of ecosystem function following extreme drought in a South African savanna grassland. Ecology 101(4):e02983. https://doi.org/10.1002/ecy.2983.

    Article  PubMed  Google Scholar 

  • Wolf S, Eugster W, Ammann C, Häni M, Zielis S, Hiller R, Stieger J, Imer D, Merbold L, Buchmann N. 2013. Contrasting response of grassland versus forest carbon and water fluxes to spring drought in switzerland. Environ Res Lett 8:035007.

    Article  Google Scholar 

  • Wolf S, Keenan TF, Fisher JB. 2016. Warm spring reduced carbon cycle impact of the 2012 US summer drought. PNAS 113:5880–5885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Dijkstra P, Koch GW, Penuelas J, Hungate BA. 2011. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biol 17:927–942.

    Article  Google Scholar 

  • Xu Z, Wan S, Ren H, Han X, Li M, Cheng W, Jiang Y. 2012. Effects of water and nitrogen addition on species turnover in temperate grasslands in northern China. PLoS One 7:e39762. https://doi.org/10.1371/journal.pone.0039762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Ren H, Li M, van Ruijven J, Han X, Wan S, Li H, Yu Q, Jiang Y, Jiang L. 2015. Environmental changes drive the temporal stability of semi-arid natural grasslands through altering species asynchrony. J Ecol 103:1308–1316.

    Article  Google Scholar 

  • Yachi S, Loreau M. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. PNAS 96:1463–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Han M, Zhou G, Li J. 2007. The changes in water-use efficiency and stoma density of Leymus chinensis along Northeast China Transect. Acta Ecol Sinica 27:16–23. (in Chinese).

    Article  Google Scholar 

  • You C, Wu F, Gan Y, Yang W, Hu Z, Xu Z, Tan B, Liu L, Ni X. 2017. Grass and forbs respond differently to nitrogen addition: a meta-analysis of global grassland ecosystems. Sci Rep 7:1563. https://doi.org/10.1038/s41598-017-01728-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeppel MJB, Wilks JV, Lewis JD. 2014. Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences 11:3083–3093.

    Article  Google Scholar 

  • Zhang Y, Loreau M, He N, Wang J, Pan Q, Bai Y, Han X. 2018. Climate variability decreases species richness and community stability in a temperate grassland. Oecologia 188:183–192.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was funded by the funds for National Natural Science Foundation of China (Grant Nos. 42041005 and 31761123001) and the CAS Strategic Priority Research Programmer (A) (Grant No. XDA20050103 and XDA19030202). S. Munson was supported by the US Geological Survey Ecosystems Mission Area. Any use of trade, product or firm names in this article is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbin Hao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 483 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Li, L., Munson, S.M. et al. Grasslands Maintain Stability in Productivity Through Compensatory Effects and Dominant Species Stability Under Extreme Precipitation Patterns. Ecosystems 25, 1150–1165 (2022). https://doi.org/10.1007/s10021-021-00706-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00706-9

Keywords

Navigation