Skip to main content

Advertisement

Log in

Drivers of N2O Emissions from Natural Forests and Grasslands Differ in Space and Time

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Understanding the drivers of greenhouse gas (GHG) emissions is one of the most critical global environmental challenges to mitigate the increasing global temperature. Nitrous oxide (N2O) emissions are highly variable in space and time and are controlled by multiple proximal drivers, that is, those that affect N2O emissions directly and in short timescales, and distal or indirect drivers that influence emissions over long timescales. Here we present a quantification of N2O emissions in grasslands and forests throughout the Pampas and the Semiarid Chaco in Argentina and reveal distal and proximal drivers, analyzing them in both spatial and temporal models. We measured N2O emissions, soil and climate variables monthly in nine sites over two years. Mean annual temperature and the following soil properties: phosphorous availability, carbon:nitrogen ratio, clay and sand percentages were the main distal drivers controlling N2O emissions in the spatial model, while among proximal drivers, only soil nitrate contents were positively related to N2O emissions. When considering the seasonal variability of N2O emissions (temporal model), we found that emissions were positively related to proximal drivers, such as soil nitrate and soil temperature. Our results show that soil N2O emission drivers differ between spatial and temporal models in natural grasslands and forests, explaining up to 85 and 56% of variations in N2O emissions, respectively. Temperature increased N2O emissions in both spatial and temporal models; therefore, future global warming may increase background emissions from natural ecosystems with important positive feedbacks on the earth system warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adair C, Hooper D, Paquette A, Hungate B. 2018. Ecosystem context illuminates conflicting roles of plant diversity in carbon storage. Ecol Lett 21:1604–19.

    Google Scholar 

  • Alvarez C, Costantini A, Alvarez CR, Alves BJR, Jantalia CP, Martellotto EE, Urquiaga S. 2012. Soil nitrous oxide emissions under different management practices in the semiarid region of the Argentinian Pampas. Nutr Cycl Agroecosyst 94:209–20.

    CAS  Google Scholar 

  • Baldi G, Guerschman J, Paruelo J. 2006. Characterizing fragmentation in temperate South America grasslands. Agric Ecosyst Environ 116:197–208.

    Google Scholar 

  • Barton K. 2016. Multi-model inference. R package version 1.15.6. https://CRANR-project.org/package=MuMIn.

  • Bond-Lamberty B, Thomson A. 2010. Temperature-associated increases in the global soil respiration record. Nature 464:579.

    CAS  PubMed  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH. 2002. Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochem Cycles 16:28-1–9.

    Google Scholar 

  • Bouyoucos GJ. 1962. Hydrometer method improved for making particle size analyses of soils 1. Agron J 54:464–5.

    Google Scholar 

  • Bowatte S, Newton PCD, Theobald P, Brock S, Hunt C, Lieffering M, Sevier S, Gebbie S, Dongwen L. 2014. Emissions of nitrous oxide from the leaves of grasses. Plant Soil 374:275–83.

    CAS  Google Scholar 

  • Bray R, Kurtz L. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–46.

    CAS  Google Scholar 

  • Brumme R, Borken W, Finke S. 1999. Hierarchical control on nitrous oxide emission in forest ecosystems. Global Biogeochem Cycles 13:1137–48.

    CAS  Google Scholar 

  • Burke W, Gabriels D, Bouma J. 1986. Soil structure assessment. In: Burke W, Gabriels D, Bouma J, Eds. Soil structure assessment. Rotterdam: Balkema.

    Google Scholar 

  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. 2013. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos Trans R Soc B Biol Sci 368:20130122.

    Google Scholar 

  • Chapin FS, Matson PA, Mooney HA. 2002. Principles of terrestrial ecosystem ecology. New York: Springer.

    Google Scholar 

  • Chapman H. 2016. Cation-exchange capacity. In: Norman AG, Ed. Methods of soil analysis. https://doi.org/10.2134/agronmonogr9.2.c6.

  • Ciais P, Sabine C, Bala G, Bopp L, Al E. 2014. Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Eds. PMM. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press. p 465–570.

    Google Scholar 

  • Collier SM, Dean AP, Oates L, Ruark MD, Jackson RD. 2016. Does plant biomass manipulation in static chambers affect nitrous oxide emissions from soils? J Environ Qual 45:751–6.

    CAS  PubMed  Google Scholar 

  • Daouia A, Laurent T, Noh H. 2017. npbr: a package for nonparametric boundary regression in R. J Stat Softw 79:1–43.

    Google Scholar 

  • Davidson E. 1991. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: icrobial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes. Washington DC: American Society of Microbiology. pp 219–35. https://ci.nii.ac.jp/naid/10030421813/.

  • Davidson EA, Kanter D. 2014. Inventories and scenarios of nitrous oxide emissions. Environ Res Lett 9:105012.

    Google Scholar 

  • Davidson E, Keller M, Erickson H, Verchot L, Veldkamp E. 2000. Testing a conceptual model of soil emissions of nitrous and nitric oxides: using two functions based on soil nitrogen availability and soil water content, the hole-in-the-pipe model characterizes a large fraction of the observed variation of nitric oxide. Bioscience 50:667–80.

    Google Scholar 

  • De Klein CAM, Harvey M. 2012. Nitrous oxide chamber Methodology Guidelines. Glob Res Alliance Agric Green Gases, Minist Prim Ind Wellington, New Zeal.

  • Del Grosso S, Parton W, Stohlgren T, Zheng D, Bachelet D, Prince S, Hibbard K, Olson R. 2008. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89:2117–26.

    PubMed  Google Scholar 

  • Della Chiesa T, Piñeiro G, Yandjian L. 2019. Gross, background, and net anthropogenic soil nitrous oxide emissions from soybean, corn, and wheat croplands. J Environ Qual 48:16–23.

    PubMed  Google Scholar 

  • Durán A, Morrás H, Studdert G, Liu X. 2011. Distribution, properties, land use and management of Mollisols in South America. Chin Geogr 21:511. https://doi.org/10.1007/s11769-011-0491-z.

    Article  Google Scholar 

  • Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–15.

    Google Scholar 

  • Findlay A. 2019. Grassland gas. Nat Clim Chang 9:557. https://doi.org/10.1038/s41558-019-0548-z.

    Article  Google Scholar 

  • Firestone MK, Davidson EA. 1989. Microbiological basis of NO and N2O production and consumption in soil. (Andreae MO, Schimel DS, editors.). New York: Wiley.

    Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Voosmarty CJ. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226.

    CAS  Google Scholar 

  • Gelfand I, Shcherbak I, Millar N, Kravchenko AN, Robertson GP. 2016. Long-term nitrous oxide fluxes in annual and perennial agricultural and unmanaged ecosystems in the upper Midwest USA. Glob Chang Biol 22:3594–607.

    PubMed  Google Scholar 

  • Groffman PM, Brumme R, Butterbach-Bahl K, Dobbie KE, Mosier AR, Ojima D, Papen H, Parton WJ, Smith KA, Wagner-Riddle C. 2000. Evaluating annual nitrous oxide fluxes at the ecosystem scale. Global Biogeochem Cycles 14:1061–70.

    CAS  Google Scholar 

  • Groffman PM, Butterbach-Bahl K, Fulweiler RW, Gold AJ, Morse JL, Stander EK, Tague C, Tonitto C, Vidon P. 2009. Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry 93:49–77.

    CAS  Google Scholar 

  • Gütlein A, Gerschlauer F, Kikotib I, Kiesea R. 2018. Impacts of climate and land use on N2O and CH4 fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania. Glob Chang Biol 24:1239–55.

    PubMed  Google Scholar 

  • Hillel D. 1980. Fundamental of soil physics. New York: Academic Press.

    Google Scholar 

  • Hu HW, Chen D, He JZ. 2015. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol Rev 39:729–49.

    CAS  PubMed  Google Scholar 

  • Hu H, Macdonald C, Trivedi P, Anderson I, Zheng Y. 2016. Effects of climate warming and elevated CO2 on autotrophic nitrification and nitrifiers in dryland ecosystems. Soil Biol Biochem 92:1–15. https://www.sciencedirect.com/science/article/pii/S0038071715003284.

  • IPCC. 2014. Climate Change 2014: Synthesis Report.

  • Jenny H. 1941. Factors of soil formation. NewYork: McGraw-Hill.

    Google Scholar 

  • Johnson P. 2014. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods Ecol Evol 5:944–6.

    PubMed  PubMed Central  Google Scholar 

  • Keeney D, Nelson D. 1982. Nitrogen. Inorganic Forms. In: Page A, Ed. Methods of soil analysis part 2 chemical and microbiological properties. Madison: American Science of Agronomy and Soil Science Society of America. p 643–98.

    Google Scholar 

  • Kim D-G, Giltrap D, Hernandez-Ramirez G. 2013. Background nitrous oxide emissions in agricultural and natural lands: a meta-analysis. Plant Soil 373:17–30.

    CAS  Google Scholar 

  • Lauenroth WK, Sala OE. 1992. Long-term forage production of North American shortgrass steppe. Ecol Appl 2:397–403.

    CAS  PubMed  Google Scholar 

  • Lewczuk N, Posse G, Richter K, Achkar A. 2017. CO2 and N2O flux balance on soybean fields during growth and fallow periods in the Argentine Pampas: a study case. Soil Tillage Res 169:65–70.

    Google Scholar 

  • Liimatainen M, Voigt C, Martikainen PJ, Hytönen J, Regina K, Óskarsson H, Maljanen M. 2018. Factors controlling nitrous oxide emissions from managed northern peat soils with low carbon to nitrogen ratio. Soil Biol Biochem 122:186–95. https://www.sciencedirect.com/science/article/pii/S0038071718301251.

  • Linn D, Doran J. 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1267–72.

    CAS  Google Scholar 

  • Luo GJ, Kiese R, Wolf B, Butterbach-Bahl K. 2013. Effects of soil temperature and moisture on methane uptakes and nitrous oxide emissions across three different ecosystem types. Biogeosciences 10:3205–19.

    CAS  Google Scholar 

  • McDaniel MD, Saha D, Dumont MG, Hernández M, Adams MA. 2019. The effect of land-use change on soil CH4 and N2O fluxes: a global meta-analysis. Ecosystems 22:1424–43.

    CAS  Google Scholar 

  • Mehnaz KR, Dijkstra FA. 2016. Denitrification and associated N2O emissions are limited by phosphorus availability in a grassland soil. Geoderma 284:34–41.

    CAS  Google Scholar 

  • Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, Van Cleemput O. 1998. Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosyst 52:225–48.

    CAS  Google Scholar 

  • Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–42.

    Google Scholar 

  • Nelson DW, Sommers L. 1982. Total carbon, organic carbon, and organic matter. In: Page AL, Miller RH, Keeney DR, Eds. Methods of soil analysis, chemical and microbiological properties. Madison: American Society of Agronomy. p 539–79.

    Google Scholar 

  • Niklaus PA, Le Roux X, Poly F, Buchmann N, Scherer-Lorenzen M, Weigelt A, Barnard RL. 2016. Plant species diversity affects soil–atmosphere fluxes of methane and nitrous oxide. Oecologia 181:919–30.

    PubMed  Google Scholar 

  • Nuñez MN, Solman SA, Cabré MF. 2009. Regional climate change experiments over southern South America. II: climate change scenarios in the late twenty-first century. Clim Dyn 32:1081–95.

    Google Scholar 

  • Ostrom NE, Sutka R, Ostrom PH, Grandy AS, Huizinga KM, Gandhi H, von Fischer JC, Robertson GP. 2010. Isotopologue data reveal bacterial denitrification as the primary source of N2O during a high flux event following cultivation of a native temperate grassland. Soil Biol Biochem 42:499–506.

    CAS  Google Scholar 

  • Oyarzabal M, Clavijo J, Oakley L, Biganzoli F, Tognetti P, Barberis I, Maturo H, Aragón R, Campanello P, Prado D, Oesterheld M, León R. 2018. Unidades de vegetación de la Argentina. Ecol Austral 28:40–63. http://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/399.

  • Parkin TB, Venterea RT. 2010. Chapter 3. Chamber-based trace gas flux measurements. In: Follett RF, Ed. Sampling protocols, p 3-1–3-39. Available at: http://www.ars.usda.gov/research/GRACEnet.

  • Parkin T, Venterea R, Hargreavesc S. 2012. Calculating the detection limits of chamber-based soil greenhouse gas flux measurements. J Environ Qual 41:705–15.

    CAS  PubMed  Google Scholar 

  • Perelman SB, Leon RJC, Oesterheld M. 2001. Cross-scale vegetation patterns of flooding pampa grasslands. J Ecol 89:562–77.

    Google Scholar 

  • Pilegaard K, Skiba U, Ambus P, Beier C, Bruggemann N, Al E. 2006. Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O). Biogeosciences 3:651–61.

    CAS  Google Scholar 

  • Piñeiro-Guerra JM, Della Chiesa T, Yahdjian L, Piñeiro G. 2019. Nitrous oxide emissions decrease with plant diversity but increase with grassland primary productivity. Oecologia 190:497–507. https://doi.org/10.1007/s00442-019-04424-x.

    Article  PubMed  Google Scholar 

  • Pinheiro J, Bates D. 2000. Linear mixed-effects models: basic concepts and examples. New York: Springer. pp 3–56.

    Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC. 2017. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-131. https://cran.r-project.org/package=nlme%3E.

  • R Core Team. 2017. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW. 2009. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–5.

    CAS  PubMed  Google Scholar 

  • Robertson G. 1989. Nitrification and denitrification in humid tropical ecosystems: potential controls on nitrogen retention. In: Proctor J, Ed. Mineral nutrient in tropical forest and savanna ecosystems, Vol. 9. Oxford: Wiley. p 55–9.

    Google Scholar 

  • Robertson G, Paul E, Harwood R. 2000. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289:1922–5.

    CAS  PubMed  Google Scholar 

  • Rochette P, Angers DA, Bélanger G, Chantigny MH, Prévost D, Lévesque G. 2004. Emissions of NO from Alfalfa and Soybean Crops in Eastern Canada. Soil Sci Soc Am J 68:493–506.

    CAS  Google Scholar 

  • Ryden JC. 1982. Effects of acetylene on nitrification and denitrification in two soils during incubation with ammonium nitrate. J Soil Sci 33:263–70.

    CAS  Google Scholar 

  • Saggar S, Jha N, Deslippe J, Bolan NS, Luo J, Giltrap DL, Kim D-G, Zaman M, Tillman RW. 2013. Denitrification and N2O:N2 production in temperate grasslands: processes, measurements, modelling and mitigating negative impacts. Sci Total Environ 465:173–95.

    CAS  PubMed  Google Scholar 

  • Sala OE, Golluscio RA, Lauenroth WK, Soriano A. 1989. Resource partitioning between shrubs and grasses in the Patagonian steppe. Oecologia 81:501–5.

    CAS  PubMed  Google Scholar 

  • Sala OE, Gherardi LA, Reichmann L, Jobbagy E, Peters D. 2012. Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philos Trans R Soc B Biol Sci 367:3135–44.

    Google Scholar 

  • Säurich A, Tiemeyer B, Dettmann U, Don A. 2019. How do sand addition, soil moisture and nutrient status influence greenhouse gas fluxes from drained organic soils? Soil Biol Biochem 135:71–84. https://www.sciencedirect.com/science/article/pii/S0038071719301270.

  • Schaufler G, Kitzler B, Schindlbacher A, Skiba U, Sutton MA, Zechmeister-Boltenstern S. 2010. Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature. Eur J Soil Sci 61:683–96.

    CAS  Google Scholar 

  • Schindlbacher A, Zechmeister-Boltenstern S, Butterbach-Bahl K. 2004. Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. J Geophys Res Atmos 109:D17302.

    Google Scholar 

  • Schlesinger WH, Bernhardt ES. 2013. Biogeochemistry: an analysis of global change. New York: Academic Press.

    Google Scholar 

  • Shcherbak L, Millar N, Robertson GP. 2014. Global metaanalysis of N2O fertilizer responses. Proc Natl Acad Sci 111:9199–204. https://doi.org/10.1073/pnas.1322434111.

  • Stehfest E, Bouwman L. 2006. N2O and NO emission from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosyst 74:207–28.

    CAS  Google Scholar 

  • Tian H, Yang J, Xu R, Lu C, Canadell JG, Davidson EA, Jackson RB, Arneth A, Chang J, Ciais P, Gerber S, Ito A, Joos F, Lienert S, Messina P, Olin S, Pan S, Peng C, Saikawa E, Thompson RL, Vuichard N, Winiwarter W, Zaehle S, Zhang B. 2019. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty. Glob Chang Biol 25:640–59.

    PubMed  Google Scholar 

  • van Haren JLM, de Oliveira Jr. RC, Restrepo-Coupe N, Hutyra L, de Camargo PB, Keller M, Salesk S. 2010. Do plant species influence soil CO2 and N2O fluxes in a diverse tropical forest? J Geophys Res 115:G03010. https://doi.org/10.1029/2009JG001231.

  • Verón S, Blanco L, Texeira M, Irisarri J. 2018. Desertification and ecosystem services supply: the case of the Arid Chaco of South America. J Arid Environ 159:66–74.

    Google Scholar 

  • Viglizzo E, Lértora F, Pordomingo AJ, Bernardos J, Roberto Z, Del Valle H. 2001. Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agric Ecosyst Environ 83:65–81.

    Google Scholar 

  • Viglizzo E, Pordomingo A, Castro M, Lertora A. 2003. Environmental assessment of agriculture at a regional scale in the Pampas of Argentina. Environ Monit Assess 87:169–95.

    CAS  PubMed  Google Scholar 

  • Villarino S, Studdert G, Baldassini P, Cendoya M, Ciuffoli L, Mastrángelo M, Piñeiro G. 2017. Deforestation impacts on soil organic carbon stocks in the Semiarid Chaco Region, Argentina. Sci Total Environ 575:1056–65. https://www.sciencedirect.com/science/article/pii/S0048969716321052.

  • Vitousek PM. 1982. Nutrient cycling and nutrient use efficiency. Am Nat 119:553–72.

    Google Scholar 

  • Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E, Johnes PJ, Katzenberger J, Martinelli LA, Matson PA. 2009. Nutrient imbalances in agricultural development. Science 324:1519–20.

    CAS  PubMed  Google Scholar 

  • Vitousek PM, Sanford RL Jr. 1986. Nutrient cycling in moist tropical forest. Annu Rev Ecol Systemat 17:137–67.

  • Wang B, Lerdau M, He Y. 2017. Widespread production of nonmicrobial greenhouse gases in soils. Glob Chang Biol 23:4472–82.

    PubMed  Google Scholar 

  • Wolf K, Veldkamp E, Homeier J, Martinson GO. 2011. Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Global Biogeochem Cycles . https://doi.org/10.1029/2010GB003876.

    Article  Google Scholar 

  • Xu-Ri I, Prentice C, Spahni R, Shan Niu H. 2012. Modelling terrestrial nitrous oxide emissions and implications for climate feedback. New Phytol 196:472–788.

    CAS  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. 2009. Mixed Effects Models and Extensions in Ecology with R. (Gail M, Krickeberg K, Samet JM, Tsiatis A, Wong W, editors.). New York: Springer.

Download references

Acknowledgements

We thank Veronica Feuring and Alina Crelier from the Laboratorio de Servicios Analíticos Especiales (FAUBA) for analyzing gas samples and the staff of INTA at each location. We thank the farm owners for allowing us to take samples when necessary. Funding Information: This work was supported by Ministerio de Agricultura Ganadería y Pesca de la Nación (MINCyT), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT by PICT 2827, PICT 1464) and a project from the Inter-American Institute for Global Change Research (IAI) CRN3005, which is supported by the US National Science Foundation (Grant GEO-1128040). PIA was supported by a postdoctoral fellowship of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and JMPG was supported by a postdoctoral fellowship of IAI (CRN3005) and ANPCyT (PICT 2827).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. I. Araujo or J. M. Piñeiro-Guerra.

Additional information

Authors’ Contributions

LY, TDC, MA, AC, CP, GPo and GPi conceived the ideas and designed the network; all authors collected the data; JMPG and PIA analyzed data; PIA, JMPG, LY and GPi wrote the paper. All authors improved the final version of the paper and gave final approval for publication. PIA and JMPG equally contributed to this work and should be considered co-first authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, P.I., Piñeiro-Guerra, J.M., Yahdjian, L. et al. Drivers of N2O Emissions from Natural Forests and Grasslands Differ in Space and Time. Ecosystems 24, 335–350 (2021). https://doi.org/10.1007/s10021-020-00522-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00522-7

Keywords

Navigation