Skip to main content

Advertisement

Log in

Relative Importance of Climate, Soil and Plant Functional Traits During the Early Decomposition Stage of Standardized Litter

  • Published:
Ecosystems Aims and scope Submit manuscript

A Correction to this article was published on 25 March 2021

This article has been updated

Abstract

Climatic factors have long been considered predominant in controlling decomposition rates at large spatial scales. However, recent research suggests that edaphic factors and plant functional traits may play a more important role than previously expected. In this study, we investigated how biotic and abiotic factors interacted with litter quality by analyzing decomposition rates for two forms of standardized litter substitutes: green tea (high-quality litter) and red tea (low-quality litter). We placed 1188 teabags at two different positions (forest floor and 8 cm deep) across 99 forest sites in France and measured 46 potential drivers at each site. We found that high-quality litter decomposition was strongly related to climatic factors, whereas low-quality litter decomposition was strongly related to edaphic factors and the identity of the dominant tree species in the stand. This indicates that the relative importance of climate, soil and plant functional traits in the litter decomposition process depends on litter quality, which was the predominant factor controlling decomposition rate in this experiment. We also found that burying litter increased decomposition rates, and that this effect was more important for green tea in drier environments. This suggests that changes in position (surface vs. buried) at the plot scale may be as important as the role of macroclimate on decomposition rates because of varying water availability along the soil profile. Acknowledging that the effect of climate on decomposition depends on litter quality and that the macroclimate is not necessarily the predominant factor at large spatial scales is the first step toward identifying the factors regulating decomposition rates from the local scale to the global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data Availability

The data used in this manuscript were submitted to the TBI database that will be published online on www.teatime4science.org after publication of the meta-analysis. It was given file number 136 in this database. Until publication on this platform, the data can be obtained by emailing the corresponding author or the TBI team.

Change history

References

  • Achat DL, Pousse N, Nicolas M, Augusto L. 2018. Nutrient remobilization in tree foliage as affected by soil nutrients and leaf life span. Ecological Monographs 88:408–28.

    Google Scholar 

  • Achat DL, Pousse N, Nicolas M, Brédoire F, Augusto L. 2016. Soil properties controlling inorganic phosphorus availability: general results from a national forest network and a global compilation of the literature. Biogeochemistry 127:255–72.

    CAS  Google Scholar 

  • Adler PB, Fajardo A, Kleinhesselink AR, Kraft NJ. 2013. Trait-based tests of coexistence mechanisms. Ecology Letters 16:1294–306.

    PubMed  Google Scholar 

  • Aerts R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems. Oikos 79:439–49.

    Google Scholar 

  • Aerts R. 2006. The freezer defrosting: global warming and litter decomposition rates in cold biomes. Journal of Ecology 94:713–24.

    Google Scholar 

  • Althuizen IH, Lee H, Sarneel JM, Vandvik V. 2018. Long-term climate regime modulates the impact of short-term climate variability on decomposition in alpine grassland soils. Ecosystems 21:1580–92.

    CAS  Google Scholar 

  • Augusto L, Achat DL, Jonard M, Vidal D, Ringeval B. 2017. Soil parent material—a major driver of plant nutrient limitations in terrestrial ecosystems. Global Change Biology 23:3808–24.

    PubMed  Google Scholar 

  • Augusto L, De Schrijver A, Vesterdal L, Smolander A, Prescott C, Ranger J. 2015. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biological Reviews 90:444–66.

    PubMed  Google Scholar 

  • Austin AT, Araujo PI, Leva PE. 2009. Interaction of position, litter type, and water pulses on decomposition of grasses from the semiarid Patagonian steppe. Ecology 90:2642–7.

    PubMed  Google Scholar 

  • Barel JM, Kuyper TW, Paul J, de Boer W, Cornelissen JH, De Deyn GB. 2019. Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes. Journal of Applied Ecology 56:132–43.

    CAS  Google Scholar 

  • Beare MH, Parmelee RW, Hendrix PF, Cheng W, Coleman DC, Crossley D Jr. 1992. Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems. Ecological Monographs 62:569–91.

    Google Scholar 

  • Becker JN, Kuzyakov Y. 2018. Teatime on Mount Kilimanjaro: Assessing climate and land-use effects on litter decomposition and stabilization using the Tea Bag Index. Land Degradation & Development 29:2321–9.

    Google Scholar 

  • Berg B, Johansson M-B, Ekbohm G, McClaugherty C, Rutigliano F, Santo AVD. 1996. Maximum decomposition limits of forest litter types: a synthesis. Canadian Journal of Botany 74:659–72.

    Google Scholar 

  • Bradford MA, Berg B, Maynard DS, Wieder WR, Wood SA. 2016. Understanding the dominant controls on litter decomposition. Journal of Ecology 104:229–38.

    CAS  Google Scholar 

  • Bradford MA, Veen GC, Bonis A, Bradford EM, Classen AT, Cornelissen JHC, Crowther TW, Jonathan R, Freschet GT, Kardol P. 2017. A test of the hierarchical model of litter decomposition. Nature Ecology & Evolution 1:1836.

    Google Scholar 

  • Cleveland CC, Reed SC, Keller AB, Nemergut DR, O’Neill SP, Ostertag R, Vitousek PM. 2014. Litter quality versus soil microbial community controls over decomposition: a quantitative analysis. Oecologia 174:283–94.

    PubMed  Google Scholar 

  • Cools N, Vesterdal L, De Vos B, Vanguelova E, Hansen K. 2014. Tree species is the major factor explaining C: N ratios in European forest soils. Forest Ecology and Management 311:3–16.

    Google Scholar 

  • Cornwell WK, Cornelissen JH, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11:1065–71.

    PubMed  Google Scholar 

  • Coulis M, Hättenschwiler S, Coq S, David J-F. 2016. Leaf litter consumption by macroarthropods and burial of their faeces enhance decomposition in a mediterranean ecosystem. Ecosystems 19:1104–15.

    Google Scholar 

  • Coûteaux M-M, Bottner P, Berg B. 1995. Litter decomposition, climate and liter quality. Trends in Ecology & Evolution 10:63–6.

    Google Scholar 

  • Currie WS, Harmon ME, Burke IC, Hart SC, Parton WJ, Silver W. 2010. Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale. Global Change Biology 16:1744–61.

    Google Scholar 

  • Davidson EA, Janssens IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165.

    CAS  Google Scholar 

  • Díaz S, Kattge J, Cornelissen JH, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC. 2016. The global spectrum of plant form and function. Nature 529:167.

    Google Scholar 

  • Didion M, Repo A, Liski J, Forsius M, Bierbaumer M, Djukic I. 2016. Towards harmonizing leaf litter decomposition studies using standard tea bags—a field study and model application. Forests 7:167.

    Google Scholar 

  • Djukic I, Kepfer-Rojas S, Schmidt IK, Larsen KS, Beier C, Berg B, Verheyen K, Caliman A, Paquette A, Gutiérrez-Girón A, Humber A, Valdecantos A, Petraglia A, Alexander H, Augustaitis A, Saillard A, Fernández ACR, Sousa AI, Lillebø AI, da Rocha Gripp A, Francez A-J, Fischer A, Bohner A, Malyshev A, Andrić A, Smith A, Stanisci A, Seres A, Schmidt A, Avila A, Probst A, Ouin A, Khuroo AA, Verstraeten A, Palabral-Aguilera AN, Stefanski A, Gaxiola A, Muys B, Bosman B, Ahrends B, Parker B, Sattler B, Yang B, Juráni B, Erschbamer B, Ortiz CER, Christiansen CT, Carol Adair E, Meredieu C, Mony C, Nock CA, Chen C-L, Wang C-P, Baum C, Rixen C, Delire C, Piscart C, Andrews C, Rebmann C, Branquinho C, Polyanskaya D, Delgado DF, Wundram D, Radeideh D, Ordóñez-Regil E, Crawford E, Preda E, Tropina E, Groner E, Lucot E, Hornung E, Gacia E, Lévesque E, Benedito E, Davydov EA, Ampoorter E, Bolzan FP, Varela F, Kristöfel F, Maestre FT, Maunoury-Danger F, Hofhansl F, Kitz F, Sutter F, Cuesta F, de Almeida Lobo F, de Souza FL, Berninger F, Zehetner F, Wohlfahrt G, Vourlitis G, Carreño-Rocabado G, Arena G, Pinha GD, González G, Canut G, Lee H, Verbeeck H, Auge H, Pauli H, Nacro HB, Bahamonde HA, Feldhaar H, Jäger H, Serrano HC, Verheyden H, Bruelheide H, Meesenburg H, Jungkunst H, Jactel H, Shibata H, Kurokawa H, Rosas HL, Rojas Villalobos HL, Yesilonis I, Melece I, Van Halder I, Quirós IG, Makelele I, Senou I, Fekete I, Mihal I, Ostonen I, Borovská J, Roales J, Shoqeir J, Lata J-C, Theurillat J-P, Probst J-L, Zimmerman J, Vijayanathan J, Tang J, Thompson J, Doležal J, Sanchez-Cabeza J-A, Merlet J, Henschel J, Neirynck J, Knops J, Loehr J, von Oppen J, Þorláksdóttir JS, Löffler J, Cardoso-Mohedano J-G, Benito-Alonso J-L, Torezan JM, Morina JC, Jiménez JJ, Quinde JD, Alatalo J, Seeber J, Stadler J, Kriiska K, Coulibaly K, Fukuzawa K, Szlavecz K, Gerhátová K, Lajtha K, Käppeler K, Jennings KA, Tielbörger K, Hoshizaki K, Green K, Yé L, Pazianoto LHR, Dienstbach L, Williams L, Yahdjian L, Brigham LM, van den Brink L, Rustad L, Zhang L, Morillas L, Xiankai L, Carneiro LS, Di Martino L, Villar L, Bader MY, Morley M, Lebouvier M, Tomaselli M, Sternberg M, Schaub M, Santos-Reis M, Glushkova M, Torres MGA, Giroux M-A, de Graaff M-A, Pons M-N, Bauters M, Mazón M, Frenzel M, Didion M, Wagner M, Hamid M, Lopes ML, Apple M, Schädler M, Weih M, Gualmini M, Vadeboncoeur MA, Bierbaumer M, Danger M, Liddell M, Mirtl M, Scherer-Lorenzen M, Růžek M, Carbognani M, Di Musciano M, Matsushita M, Zhiyanski M, Puşcaş M, Barna M, Ataka M, Jiangming M, Alsafran M, Carnol M, Barsoum N, Tokuchi N, Eisenhauer N, Lecomte N, Filippova N, Hölzel N, Ferlian O, Romero O, Pinto OB, Peri P, Weber P, Vittoz P, Turtureanu PD, Fleischer P, Macreadie P, Haase P, Reich P, Petřík P, Choler P, Marmonier P, Muriel P, Ponette Q, Guariento RD, Canessa R, Kiese R, Hewitt R, Rønn R, Adrian R, Kanka R, Weigel R, Gatti RC, Martins RL, Georges R, Meneses RI, Gavilán RG, Dasgupta S, Wittlinger S, Puijalon S, Freda S, Suzuki S, Charles S, Gogo S, Drollinger S, Mereu S, Wipf S, Trevathan-Tackett S, Löfgren S, Stoll S, Trogisch S, Hoeber S, Seitz S, Glatzel S, Milton SJ, Dousset S, Mori T, Sato T, Ise T, Hishi T, Kenta T, Nakaji T, Michelan TS, Camboulive T, Mozdzer TJ, Scholten T, Spiegelberger T, Zechmeister T, Kleinebecker T, Hiura T, Enoki T, Ursu T-M, di Cella UM, Hamer U, Klaus VH, Rêgo VM, Di Cecco V, Busch V, Fontana V, Piscová V, Carbonell V, Ochoa V, Bretagnolle V, Maire V, Farjalla V, Zhou W, Luo W, McDowell WH, Hu Y, Utsumi Y, Kominami Y, Zaika Y, Rozhkov Y, Kotroczó Z, Tóth Z. 2018. Early stage litter decomposition across biomes. Science of the Total Environment 628–629:1369–94.

    Google Scholar 

  • Fanin N, Bertrand I. 2016. Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient. Soil Biology and Biochemistry 94:48–60.

    CAS  Google Scholar 

  • Fanin N, Fromin N, Barantal S, Hättenschwiler S. 2017. Stoichiometric plasticity of microbial communities is similar between litter and soil in a tropical rainforest. Scientific Reports 7:12498.

    PubMed  PubMed Central  Google Scholar 

  • Fanin N, Fromin N, Bertrand I. 2016. Functional breadth and home-field advantage generate functional differences among soil microbial decomposers. Ecology 97:1023–37.

    PubMed  Google Scholar 

  • Fanin N, Fromin N, Buatois B, Hättenschwiler S. 2013. An experimental test of the hypothesis of non-homeostatic consumer stoichiometry in a plant litter–microbe system. Ecology Letters 16:764–72.

    PubMed  Google Scholar 

  • Fanin N, Hättenschwiler S, Fromin N. 2014. Litter fingerprint on microbial biomass, activity, and community structure in the underlying soil. Plant and Soil 379:79–91.

    CAS  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JH. 2012. A plant economics spectrum of litter decomposability. Functional Ecology 26:56–65.

    Google Scholar 

  • Gerdol R, Marchesini R, Iacumin P. 2016. Bedrock geology interacts with altitude in affecting leaf growth and foliar nutrient status of mountain vascular plants. Journal of Plant Ecology 10:839–50.

    Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ. 2000. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology 6:751–65.

    Google Scholar 

  • Guittar J, Goldberg D, Klanderud K, Telford RJ, Vandvik V. 2016. Can trait patterns along gradients predict plant community responses to climate change? Ecology 97:2791–801.

    PubMed  Google Scholar 

  • Houben D, Faucon M-P, Mercadal A-M. 2018. Response of Organic Matter Decomposition to No-Tillage Adoption Evaluated by the Tea Bag Technique. Soil Systems 2:42.

    CAS  Google Scholar 

  • Houlton B, Morford S, Dahlgren R. 2018. Convergent evidence for widespread rock nitrogen sources in Earth’s surface environment. Science 360:58–62.

    CAS  PubMed  Google Scholar 

  • Joly FX, Milcu A, Scherer-Lorenzen M, Jean LK, Bussotti F, Dawud SM, Müller S, Pollastrini M, Raulund-Rasmussen K, Vesterdal L. 2017. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. New Phytologist 214:1281–93.

    CAS  Google Scholar 

  • Jonard M, André F, Dambrine E, Ponette Q, Ulrich E. 2009. Temporal trends in the foliar nutritional status of the French, Walloon and Luxembourg broad-leaved plots of forest monitoring. Annals of Forest Science 66:1–10.

    Google Scholar 

  • Jonard M, Nicolas M, Coomes DA, Caignet I, Saenger A, Ponette Q. 2017. Forest soils in France are sequestering substantial amounts of carbon. Science of the Total Environment 574:616–28.

    CAS  Google Scholar 

  • Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB. 2008. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters 11:35–43.

    PubMed  Google Scholar 

  • Keuskamp JA, Dingemans BJ, Lehtinen T, Sarneel JM, Hefting MM. 2013. Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods in Ecology and Evolution 4:1070–5.

    Google Scholar 

  • Kock N. 2015. Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of e-Collaboration (IJeC) 11:1–10.

    Google Scholar 

  • Krishna M, Mohan M. 2017. Litter decomposition in forest ecosystems: a review. Energy, Ecology and Environment 2:236–49.

    Google Scholar 

  • Lin D, Wang F, Fanin N, Pang M, Dou P, Wang H, Qian S, Zhao L, Yang Y, Mi X. 2019. Soil fauna promote litter decomposition but do not alter the relationship between leaf economics spectrum and litter decomposability. Soil Biology and Biochemistry 107519.

  • Liski J, Nissinen A, Erhard M, Taskinen O. 2003. Climatic effects on litter decomposition from arctic tundra to tropical rainforest. Global Change Biology 9:575–84.

    Google Scholar 

  • Liu G, Cornwell WK, Pan X, Ye D, Liu F, Huang Z, Dong M, Cornelissen JH. 2015. Decomposition of 51 semidesert species from wide-ranging phylogeny is faster in standing and sand-buried than in surface leaf litters: implications for carbon and nutrient dynamics. Plant and Soil 396:175–87.

    CAS  Google Scholar 

  • Liu P, Huang J, Han X, Sun OJ, Zhou Z. 2006. Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China. Applied Soil Ecology 34:266–75.

    Google Scholar 

  • Makkonen M, Berg MP, Handa IT, Hättenschwiler S, van Ruijven J, van Bodegom PM, Aerts R. 2012. Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecology Letters 15:1033–41.

    PubMed  Google Scholar 

  • Manzoni S, Schimel JP, Porporato A. 2012. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93:930–8.

    PubMed  Google Scholar 

  • Mayer M, Matthews B, Rosinger C, Sandén H, Godbold DL, Katzensteiner K. 2017. Tree regeneration retards decomposition in a temperate mountain soil after forest gap disturbance. Soil Biology and Biochemistry 115:490–8.

    CAS  Google Scholar 

  • Meentemeyer V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–72.

    CAS  Google Scholar 

  • Mikola JT, Virtanen T, Linkosalmi M, Vähä E, Nyman J, Postanogova O, Räsänen TA, Kotze DJ, Laurila T, Juutinen SA. 2018. Spatial variation and linkages of soil and vegetation in the Siberian Arctic tundra–coupling field observations with remote sensing data. Biogeosciences 15:2781–801.

    CAS  Google Scholar 

  • Moorhead DL, Reynolds JF. 1993. Changing carbon chemistry of buried creosote bush litter during decomposition in the Northern Chihuahuan Desert. American Midland Naturalist 130:83–9.

    Google Scholar 

  • Moorhead DL, Sinsabaugh RL. 2006. A theoretical model of litter decay and microbial interaction. Ecological Monographs 76:151–74.

    Google Scholar 

  • Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter AA. 2014. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology 5:22.

    PubMed  PubMed Central  Google Scholar 

  • Nottingham AT, Turner BL, Whitaker J, Ostle NJ, McNamara NP, Bardgett RD, Salinas N, Meir P. 2015. Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm. Biogeosciences 12:6071–83.

    Google Scholar 

  • Ordoñez JC, Van Bodegom PM, Witte J-PM, Wright IJ, Reich PB, Aerts R. 2009. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography 18:137–49.

    Google Scholar 

  • Petraglia A, Cacciatori C, Chelli S, Fenu G, Calderisi G, Gargano D, Abeli T, Orsenigo S, Carbognani M. 2019. Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant and Soil 435:187–200.

    CAS  Google Scholar 

  • Poeplau C, Zopf D, Greiner B, Geerts R, Korvaar H, Thumm U, Don A, Heidkamp A, Flessa H. 2018. Why does mineral fertilization increase soil carbon stocks in temperate grasslands? Agriculture, ecosystems & environment 265:144–55.

    CAS  Google Scholar 

  • Portillo-Estrada M, Pihlatie M, Korhonen JF, Levula J, Frumau AK, Ibrom A, Lembrechts JJ, Morillas L, Horváth L, Jones SK. 2016. Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments. Biogeosciences 13:1621–33.

    CAS  Google Scholar 

  • Powers JS, Montgomery RA, Adair EC, Brearley FQ, DeWalt SJ, Castanho CT, Chave J, Deinert E, Ganzhorn JU, Gilbert ME. 2009. Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology 97:801–11.

    CAS  Google Scholar 

  • Prescott CE. 2010. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–49.

    CAS  Google Scholar 

  • Raich JW, Schlesinger WH. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44:81–99.

    Google Scholar 

  • Reich P, Wright I, Cavender-Bares J, Craine J, Oleksyn J, Westoby M, Walters M. 2003. The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences 164:S143–64.

    Google Scholar 

  • Reich PB. 2014. The world-wide ‘fast–slow’plant economics spectrum: a traits manifesto. Journal of Ecology 102:275–301.

    Google Scholar 

  • Reich PB, Oleksyn J, Modrzynski J, Mrozinski P, Hobbie SE, Eissenstat DM, Chorover J, Chadwick OA, Hale CM, Tjoelker MG. 2005. Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecology Letters 8:811–18.

    Google Scholar 

  • Rovira P, Vallejo V. 1997. Organic carbon and nitrogen mineralization under Mediterranean climatic conditions: the effects of incubation depth. Soil Biology and Biochemistry 29:1509–20.

    CAS  Google Scholar 

  • Schimel J, Balser TC, Wallenstein M. 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–94.

    PubMed  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM, Anderson J. 1979. Decomposition in terrestrial ecosystems. Berkeley: Univ of California Press.

    Google Scholar 

  • Tresch S, Moretti M, Le Bayon R-C, Mäder P, Zanetta A, Frey D, Fliessbach A. 2018. A gardener’s influence on urban soil quality. Frontiers in Environmental Science 6:1–17.

    Google Scholar 

  • Trofymow J, Moore T, Titus B, Prescott C, Morrison I, Siltanen M, Smith S, Fyles J, Wein R, Camiré C. 2002. Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Canadian Journal of Forest Research 32:789–804.

    Google Scholar 

  • Vivanco L, Austin AT. 2006. Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America. Oecologia 150:97–107.

    PubMed  Google Scholar 

  • Vivanco L, Austin AT. 2008. Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. Journal of Ecology 96:727–36.

    CAS  Google Scholar 

  • Wardle DA, Jonsson M, Bansal S, Bardgett RD, Gundale MJ, Metcalfe DB. 2012. Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a long-term natural experiment. Journal of Ecology 100:16–30.

    Google Scholar 

  • Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W. 2015. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecological Monographs 85:133–55.

    Google Scholar 

  • Zhou G, Guan L, Wei X, Tang X, Liu S, Liu J, Zhang D, Yan J. 2008. Factors influencing leaf litter decomposition: an intersite decomposition experiment across China. Plant and Soil 311:61.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank all the foresters from the ‘Office National des Forêts’ for their assistance in the field throughout the course of the experiment and the numerous laboratory assistants for preparing the tea bags after harvest. We thank Victoria Moore for her help with English and useful remarks. JMS acknowledges the Swedish Research Council VR for funding.

Funding

Funding was provided by INRA - Department of Forest, Grassland and Freshwater Ecology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Fanin.

Additional information

Author’s Contribution

This study was conceived and designed by LA with the help of NF. LA and NF prepared the kits for the foresters. MN and SC supervised the RENECOFOR network. Laboratory data were obtained by SB with the help of NF and LA. NF analyzed the data and wrote the first draft of the manuscript in close consultation with LA and with significant help from JMS. All authors contributed to manuscript completion and revision.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanin, N., Bezaud, S., Sarneel, J.M. et al. Relative Importance of Climate, Soil and Plant Functional Traits During the Early Decomposition Stage of Standardized Litter. Ecosystems 23, 1004–1018 (2020). https://doi.org/10.1007/s10021-019-00452-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-019-00452-z

Keywords

Navigation