pp 1–16 | Cite as

Resistance, Resilience or Change: Post-disturbance Dynamics of Boreal Forests After Insect Outbreaks

  • Martina Sánchez-PinillosEmail author
  • Alain Leduc
  • Aitor Ameztegui
  • Daniel Kneeshaw
  • Francisco Lloret
  • Lluís Coll


Understanding and measuring forest resistance and resilience have emerged as key priorities in ecology and management, particularly to maintain forest functioning. The analysis of the factors involved in a forest’s ability to cope with disturbances is key in identifying forest vulnerability to environmental change. In this study, we apply a procedure based on combining pathway analyses of forest composition and structure with quantitative indices of resistance and resilience to disturbances. We applied our approach to boreal forests affected by a major spruce budworm outbreak in the province of Quebec (Canada). We aimed to identify the main patterns of forest dynamics and the environmental factors affecting these responses. To achieve this goal, we developed quantitative metrics of resistance and resilience. We then compared forests with different pre-disturbance conditions and explored the factors influencing their recovery following disturbance. We found that post-outbreak forest dynamics are determined by distinct resistance and resilience patterns according to dominant species and stand composition and structure. Black spruce forests are highly resistant to spruce budworm outbreaks, but this resistance is conditioned by the length of the defoliation period, with long outbreaks having the potential to lead the system to collapse. In contrast, balsam fir forests easily change to a different composition after outbreaks but are highly resilient when mixed with hardwood species. Overall, the severity of the disturbance and the tree species affected are the main drivers contributing to boreal forest resistance and resilience. Our procedure is valuable to understand post-disturbance dynamics of a broad range of communities and to guide management strategies focused on enhancing the resistance and resilience of the system.


biotic disturbance ecosystem collapse forest dynamics resilience resistance spruce budworm stability successional pathways 



This study was funded by MINECO via EST_RES Project (AGL2015-70425-R) and BIOCLIM (CGL2015-6741R) and the EC through the Marie Curie IRSES Project NEWFORESTS (PIRSES-GA-2013-612645) and the ERA-NET Foresterra Project INFORMED (Grant Number: 29183). MINECO provided MSP with support through a predoctoral contract (BES-2013-063019) and AA through a Juan de la Cierva fellowship (FJCI-2014-20739). We thank Mélanie Desrochers and Aurélie Terrier for technical support and three anonymous reviewers for constructive comments on the manuscript.

Data Availability

The data used in this study are publicly available on the Données Québec webpage (

Supplementary material

10021_2019_378_MOESM1_ESM.pdf (898 kb)
Supplementary material 1 (PDF 898 kb)


  1. Ayres MP, Lombardero MJ. 2017. Forest pests and their management in the Anthropocene. Can J For Res 07:1–10.Google Scholar
  2. Bagchi S, Singh NJ, Briske DD, Bestelmeyer BT, McClaran MP, Murthy K. 2017. Quantifying long-term plant community dynamics with movement models: implications for ecological resilience. Ecol Appl 27:1514–28.CrossRefPubMedGoogle Scholar
  3. Baskerville GL. 1975. Spruce budworm: Super Silviculturist. For Chron:138–40.Google Scholar
  4. Bergeron Y. 2000. Species and Stand Dynamics in the Mixed Woods of Quebec’s Southern Boreal Forest. Ecology 81:1500–16.CrossRefGoogle Scholar
  5. Bergeron Y, Leduc A, Morin H, Joyal C. 1995. Balsam fir mortality following the last spruce budworm outbreak in northwestern Quebec. Can J For Res 25:1375–84.CrossRefGoogle Scholar
  6. Blais JR. 1957. Some relationships of the spruce budworm, Choristoneura fumiferana (Clem.) to black spruce, Picea mariana (Moench) Voss. For Chron 33:364–72.CrossRefGoogle Scholar
  7. Bognounou F, De Grandpré L, Pureswaran DS, Kneeshaw D. 2017. Temporal variation in plant neighborhood effects on the defoliation of primary and secondary hosts by an insect pest. Ecosphere 8:1–15.CrossRefGoogle Scholar
  8. Bouchard M, Auger I. 2014. Influence of environmental factors and spatio-temporal covariates during the initial development of a spruce budworm outbreak. Landsc Ecol 29:111–26.CrossRefGoogle Scholar
  9. Bouchard M, Kneeshaw D, Bergeron Y. 2006. Forest Dynamics after Successive Spruce Budworm Outbreaks in Mixedwood Forests. Ecology 87:2319–29.CrossRefPubMedGoogle Scholar
  10. Boulanger Y, Arseneault D. 2004. Spruce budworm outbreaks in eastern Quebec over the last 450 years. Can J For Res 34:1035–43.CrossRefGoogle Scholar
  11. Bruelheide H, Luginbühi U. 2009. Peeking at ecosystem stability: Making use of a natural disturbance experiment to analyze resistance and resilience. Ecology 90:1314–25.CrossRefPubMedGoogle Scholar
  12. Connell SD, Ghedini G. 2015. Resisting regime-shifts: The stabilising effect of compensatory processes. Trends Ecol Evol 30:513–15.CrossRefPubMedGoogle Scholar
  13. Cribari-Neto F, Zeileis A. 2010. Beta Regression in R. J Stat Softw 34:1–24.CrossRefGoogle Scholar
  14. D’Aoust V, Kneeshaw D, Bergeron Y. 2004. Characterization of canopy openness before and after a spruce budworm outbreak in the southern boreal forest. Can J For Res 34:339–52.CrossRefGoogle Scholar
  15. D’Orangeville L, Houle D, Duchesne L, Phillips RP, Bergeron Y, Kneeshaw D. 2018. Beneficial effects of climate warming on boreal tree growth may be transitory. Nat Commun 9:3213.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Despland E. 2017. Effects of phenological synchronization on caterpillar early-instar survival under a changing climate. Can J For Res:1–8.Google Scholar
  17. Díaz-Delgado R, Lloret F, Pons X, Terradas J. 2002. Satellite evidence of decreasing resilience in Mediterranean plant communities after recurrent wildfires. Ecology 83:2293–303.CrossRefGoogle Scholar
  18. Duveneck MJ, Scheller RM. 2016. Measuring and managing resistance and resilience under climate change in northern Great Lake forests (USA). Landsc Ecol 31:669–86.CrossRefGoogle Scholar
  19. De Cáceres M, Font X, Oliva F. 2010. The management of vegetation classifications with fuzzy clustering. J Veg Sci.
  20. De Cáceres M, Legendre P, He F. 2013. Dissimilarity measurements and the size structure of ecological communities. Methods Ecol Evol 4:1167–77.CrossRefGoogle Scholar
  21. De Grandpré L, Kneeshaw DD, Perigon S, Boucher D, Marchand M, Pureswaran D, Girardin MP. 2018. Adverse climatic periods precede and amplify defoliator-induced tree mortality in eastern boreal North America. J Ecol 0:1–16.Google Scholar
  22. Gunderson LH. 2000. Ecological resilience — in theory and application. Annu Rev Ecol Syst 31:425–39.CrossRefGoogle Scholar
  23. Hennigar CR, MacLean DA, Quiring DT, Kershaw JA. 2008. Differences in Spruce Budworm Defoliation among Balsam Fir and White, Red, and Black Spruce. For Sci 54:158–66.Google Scholar
  24. Hodgson D, McDonald JL, Hosken DJ. 2015. What do you mean, ‘resilient’? Trends Ecol Evol 30:503–6.CrossRefPubMedGoogle Scholar
  25. Hurvich CM, Tsai C-L. 1989. Regression and time series model selection in small samples. Biometrika 76:297–307.CrossRefGoogle Scholar
  26. Jactel H, Brockerhoff EG. 2007. Tree diversity reduces herbivory by forest insects. Ecol Lett 10:835–48.CrossRefGoogle Scholar
  27. Kautz M, Meddens AJH, Hall RJ, Arneth A. 2017. Biotic disturbances in Northern Hemisphere forests – a synthesis of recent data, uncertainties and implications for forest monitoring and modelling. Glob Ecol Biogeogr 26:533–52.CrossRefGoogle Scholar
  28. Kneeshaw D, Bergeron Y. 1998. Canopy Gap Characteristics and Tree Replacement in the Southeastern Boreal Forest. Ecology 79:783–94.CrossRefGoogle Scholar
  29. Kneeshaw D, Sturtevant BR, Cooke B, Work TT, Pureswaran D, De Grandpre L, MacLean D. 2015. Insect Disturbances in Forest Ecosystems. In: Corlett RT, Bergeron Y, Eds. Peh KS-H. Oxford, UK: Routledge Handbook of Forest Ecology. Routledge.Google Scholar
  30. Legendre P, Gallagher ED. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–80.CrossRefPubMedGoogle Scholar
  31. Lexerød NL, Eid T. 2006. An evaluation of different diameter diversity indices based on criteria related to forest management planning. For Ecol Manage 222:17–28.CrossRefGoogle Scholar
  32. Lindenmayer D, Messier C, Sato C. 2016. Avoiding ecosystem collapse in managed forest ecosystems. Front Ecol Environ 14:561–8.CrossRefGoogle Scholar
  33. Lloret F, Keeling EG, Sala A. 2011. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120:1909–20.CrossRefGoogle Scholar
  34. MacKinnon WE, MacLean DA. 2003. The influence of forest and stand conditions on spruce budworm defoliation in New Brunswick, Canada. For Sci 49:657–67.Google Scholar
  35. MacLean DA. 1980. Vulnerability of fir-spruce stands during uncontrolled spruce budworm outbreaks: A review and discussion. For Chron 56:213–21.CrossRefGoogle Scholar
  36. Ministère des Forêts de la Faune et des Parcs. 2016. Données sur les perturbations naturelles – insecte: tordeuse des bourgeons de l’épinette. Jeu de données, version shapefile.
  37. Ministère des Ressources Naturelles. 2013. Données descriptives des placettes-échantillons permanentes. Quebec: Direction des inventaires forestiers.Google Scholar
  38. Morin H. 1994. Dynamics of balsam fir forests in relation to spruce budworm outbreaks in the Boreal Zone of Quebec. Can J For Res 24:730–41.CrossRefGoogle Scholar
  39. Nimmo DG, Mac Nally R, Cunningham SC, Haslem A, Bennett AF. 2015. Vive la résistance : reviving resistance for 21st century conservation. Trends Ecol Evol 30:516–23.CrossRefPubMedGoogle Scholar
  40. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2017. vegan: Community Ecology Package.:1–292.
  41. Oliver TH, Heard MS, Isaac NJB, Roy DB, Procter D, Eigenbrod F, Freckleton R, Hector A, Orme CDL, Petchey OL, Proença V, Raffaelli D, Suttle KB, Mace GM, Martín-López B, Woodcock BA, Bullock JM. 2015. Biodiversity and Resilience of Ecosystem Functions. Trends Ecol Evol 30:673–84.CrossRefGoogle Scholar
  42. Payette S, Delwaide A. 2003. Shift of Conifer Boreal Forest to Lichen-Heath Parkland Caused by Successive Stand Disturbances. Ecosystems 6:540–50.CrossRefGoogle Scholar
  43. Pothier D, Savard F. 1998. Actualisation des tables de production pour les principales espèces forestières du Québec. Québec, Québec: Ministère des Ressources Naturelles et de la Faune du Québec.Google Scholar
  44. Puettmann KJ. 2011. Silvicultural Challenges and Options in the Context of Global Change : “Simple” Fixes and Opportunities for New Management Approaches. J For 109:321–31.Google Scholar
  45. Pureswaran DS, De Grandpré L, Paré D, Taylor A, Barrette M, Morin H, Régnière J, Kneeshaw D. 2015. Climate-induced changes in host tree-insect phenology may drive ecological state-shift in boreal forests. Ecology 96:1480–91.CrossRefGoogle Scholar
  46. Quinlan AE, Berbés-Blázquez M, Haider LJ, Peterson GD. 2016. Measuring and assessing resilience: broadening understanding through multiple disciplinary perspectives. J Appl Ecol 53:677–87.CrossRefGoogle Scholar
  47. R Core Team. 2017. R: A language and environment for statistical computing.
  48. Régnière J, Bolstad P. 1994. Statistical Simulation of Daily Air Temperature Patterns Eastern North America to Forecast Seasonal Events in Insect Pest Management. Environ Entomol 23:1368 LP-80.Google Scholar
  49. Régnière J, Powell J, Bentz B, Nealis V. 2012. Effects of temperature on development, survival and reproduction of insects: Experimental design, data analysis and modeling. J Insect Physiol 58:634–47.CrossRefGoogle Scholar
  50. Reyer CPO, Brouwers N, Rammig A, Brook BW, Epila J, Grant RF, Holmgren M, Langerwisch F, Leuzinger S, Medlyn B, Pfeifer M, Verbeeck H, Villela DM. 2015. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J Ecol 103:5–15.CrossRefGoogle Scholar
  51. Sánchez-Pinillos M, Coll L, De Cáceres M, Ameztegui A. 2016. Assessing the persistence capacity of communities facing natural disturbances on the basis of species response traits. Ecol Indic 66:76–85.CrossRefGoogle Scholar
  52. Saucier JP, Robitaille A, Grondin P, Bergeron JF, Gosselin J. 2011. Les régions écologiques du Québec méridional (4 version).Google Scholar
  53. Scheffer M, Hirota M, Holmgren M, Van Nes EH, Chapin FS. 2012. Thresholds for boreal biome transitions. Proc Natl Acad Sci U S A 109:21384–9.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Schelhaas M-J, Nabuurs G-J, Schuck A. 2003. Natural disturbances in the European forests in the 19th and 20th centuries. Glob Chang Biol 9:1620–33.CrossRefGoogle Scholar
  55. Seidl R, Spies TA, Peterson DL, Stephens SL, Hicke JA. 2016. Searching for resilience: Addressing the impacts of changing disturbance regimes on forest ecosystem services. J Appl Ecol 53:120–9.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Su Q, Maclean DA, Needham TD. 1996. The influence of hardwood content on balsam fir defoliation by spruce budworm. Can J For Res 26:1620–8.CrossRefGoogle Scholar
  57. Sugiura N. 1978. Further analysts of the data by Akaike’s information criterion and the finite corrections. Commun Stat - Theory Methods 7:13–26.CrossRefGoogle Scholar
  58. Taylor AR, Chen HYH. 2011. Multiple successional pathways of boreal forest stands in central Canada. Ecography (Cop) 34:208–19.CrossRefGoogle Scholar
  59. Terrier A, Girardin MP, Périé C, Legendre P, Bergeron Y. 2013. Potential changes in forest composition could reduce impacts of climate change on boreal wildfires. Ecol Appl 23:21–35.CrossRefPubMedGoogle Scholar
  60. Tilman D, Downing JA. 1994. Biodiversity and stability in grasslands. Nature 367:363–5.CrossRefGoogle Scholar
  61. Weed AS. 2013. Consequences of climate change for biotic disturbances. Ecol Monogr 83:441–70.CrossRefGoogle Scholar
  62. Willis KJ, Jeffers ES, Tovar C. 2018. What makes a terrestrial ecosystem resilient? Science (80-) 359:988–9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Forest Sciences Centre of Catalonia (CTFC)SolsonaSpain
  2. 2.Département des Sciences Biologiques, Chaire Industrielle CRSNG UQAT-UQAM en Aménagement Forestier DurableUniversité du Québec à Montréal and Centre for Forest ResearchMontréalCanada
  3. 3.CREAFCerdanyola del VallèsSpain
  4. 4.Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain
  5. 5.Department of Agriculture and Forest Engineering (EAGROF)University of LleidaLleidaSpain

Personalised recommendations