Advertisement

Ecosystems

, Volume 22, Issue 8, pp 1838–1851 | Cite as

Simulation and Analysis of the Effect of a Spruce Budworm Outbreak on Carbon Dynamics in Boreal Forests of Quebec

  • Zelin Liu
  • Changhui PengEmail author
  • Louis De Grandpré
  • Jean-Noël Candau
  • Timothy Work
  • Chunbo Huang
  • Daniel Kneeshaw
Article
  • 209 Downloads

Abstract

In a climate change context, the sequestration of atmospheric carbon (C) in forests is key for achieving emission targets. It is thus critical to understand how large-scale disturbances are affecting the overall forest C stocks. C dynamics in North American boreal forest ecosystems are strongly affected by the defoliation and mortality that occurs during a spruce budworm (SBW) outbreak. We used forest inventory geospatial databases, monthly climate data, spatially explicit defoliation sequence data, and the TRIPLEX-Insect model to simulate C dynamics with and without SBW disturbances in stands with different vulnerability to the SBW in the boreal forest of Quebec. Our results showed that SBW defoliation and related mortality decreased the average aboveground biomass and belowground biomass by 5.96% and 6.94% by 2017, respectively. At the same time, 21,046 km2 of forest were converted from a C sink to a source. This study provides the first quantitative analysis of the effect of a SBW outbreak on carbon dynamics for three different boreal stand types (that is, fir, spruce, and mixed fir-spruce) at a regional scale. Our results suggested that younger fir forests lost less C than either fir-spruce or spruce forests during SBW attacks between 2007 and 2017 in Quebec. This highlights the importance of considering species composition when assessing vulnerability or resilience.

Keywords

forest carbon tree mortality natural disturbance TRIPLEX-Insect net ecosystem productivity cumulative defoliation 

Notes

Acknowledgements

This study was a part of research project recently funded by the Fonds de recherche du Québec (FQRNT) program and the Natural Sciences and Engineering Research Council of Canada (NSERC) Discover Grant. We wish to thank Marie-Claude Lambert for supplying the climate data used in this analysis. We also appreciate Dr. Jonathan Boucher from SOPFEU who provided the mortality data for validation in this study.

Supplementary material

10021_2019_377_MOESM1_ESM.docx (4.2 mb)
Supplementary material 1 (DOCX 4340 kb)

References

  1. Alexander RR. 1987. Ecology, silviculture, and management of the Engelmann spruce-subalpine fir type in the central and southern Rocky Mountains.Google Scholar
  2. Anderegg WR, Hicke JA, Fisher RA, Allen CD, Aukema J, Bentz B, Hood S, Lichstein JW, Macalady AK, McDowell N, Pan Y. 2015. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol 208(3):674–83.PubMedGoogle Scholar
  3. Berger JP. 2015. Norme de stratification écoforestière: quatrième inventaire écoforestier du Québec méridional. Ministère des forêts, de la faune et des parcs, Secteur des forêts, Direction des inventaires forestiers.Google Scholar
  4. Blais J. 1983. Trends in the frequency, extent, and severity of spruce budworm outbreaks in eastern Canada. Can J For Res 13:539–47.Google Scholar
  5. Bognounou F, De Grandpré L, Pureswaran DS, Kneeshaw D. 2017. Temporal variation in plant neighborhood effects on the defoliation of primary and secondary hosts by an insect pest. Ecosphere 8(3):e01759.Google Scholar
  6. Bossel H. 1996. TREEDYN3 forest simulation model. Ecol Model 90:187–227.Google Scholar
  7. Bouchard M, Kneeshaw D, Messier C. 2007. Forest dynamics following spruce budworm outbreaks in the northern and southern mixedwoods of central Quebec. Can J For Res 37(4):763–72.Google Scholar
  8. Boulanger Y, Arseneault D, Morin H, Jardon Y, Bertrand PC, Dagneaud PC. 2012. Dendrochronological reconstruction of spruce budworm (Choristoneura fumiferana) outbreaks in southern Quebec for the last 400 years. Can J For Res 42:1264–76.Google Scholar
  9. Cao M, Woodward FI. 1998. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393(6682):249.Google Scholar
  10. Chapman SK, Hart SC, Cobb NS, Whitham TG, Koch GW. 2003. Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesis. Ecology 84(11):2867–76.Google Scholar
  11. Clark KL, Skowronski N, Hom J. 2010. Invasive insects impact forest carbon dynamics. Glob Change Biol 16(1):88–101.Google Scholar
  12. Coops NC, Waring RH, Brown SR, Running SW. 2001. Comparisons of predictions of net primary production and seasonal patterns in water use derived with two forest growth models in Southwestern Oregon. Ecol Modell 142(1–2):61–81.Google Scholar
  13. Coulombe G, Huot J, Arsenault J, Bauce E, Bernard JT, Bouchard A, Liboiron MA, Szaraz G (2004) Commission d’étude sur la gestion de la forêt publique québécoise. Bibliothèque nationale du Québec. p 307.Google Scholar
  14. De Grandpré L, Kneeshaw DD, Perigon S, Boucher D, Marchand M, Pureswaran D, Girardin MP. 2019. Adverse climatic periods precede and amplify defoliator-induced tree mortality in eastern boreal North America. J Ecol 107(1):452–67.Google Scholar
  15. Dymond CC, Neilson ET, Stinson G, Porter K, MacLean DA, Gray DR, Campagna M, Kurz WA. 2010. Future spruce budworm outbreak may create a carbon source in Eastern Canadian Forests. Ecosystems 13(6):917–31.Google Scholar
  16. Edburg SL, Hicke JA, Lawrence DM, Thornton PE. 2011. Simulating coupled carbon and nitrogen dynamics following mountain pine beetle outbreaks in the western United States. J Geophys Res Biogeosci 116(G4).Google Scholar
  17. Eyles A, Smith D, Pinkard EA, Smith I, Corkrey R, Elms S, Beadle C, Mohammed C. 2011. Photosynthetic responses of field-grown Pinus radiata trees to artificial and aphid-induced defoliation. Tree Physiol 31(6):592–603.PubMedGoogle Scholar
  18. Fleming RA, Volney WJA. 1995. Effects of climate change on insect defoliator population processes in Canada’s boreal forest: some plausible scenarios. Water Air Soil Pollut 82(1–2):445–54.Google Scholar
  19. Fleming RA, Candau J-N, McAlpine RS. 2002. Landscape-scale analysis of interactions between insect defoliation and forest fire in Central Canada. Clim Change 55:251–72.Google Scholar
  20. Forman RT. 2014. Land Mosaics: The ecology of landscapes and regions (1995). Washington: Island Press.Google Scholar
  21. Foster JR. 2011. Forest insect defoliation patterns and carbon dynamics: Linking remote sensing with simulation models (PhD Dissertation). Wisconsin: University of Wisconsin.Google Scholar
  22. Franklin JF, Spies TA, Van Pelt R, Carey AB, Thornburgh DA, Berg DR, Lindenmayer DB, Harmon ME, Keeton WS, Shaw DC, Bible K. 2002. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For Ecol Manag 155(1–3):399–423.Google Scholar
  23. Gang C, Zhang Y, Wang Z, Chen Y, Yang Y, Li J, Cheng J, Qi J, Odeh I. 2017. Modeling the dynamics of distribution, extent, and NPP of global terrestrial ecosystems in response to future climate change. Glob Planet Change 148:153–65.Google Scholar
  24. Ghimire B, Williams CA, Collatz GJ, Vanderhoof M, Rogan J, Kulakowski D, Masek JG. 2015. Large carbon release legacy from bark beetle outbreaks across Western United States. Glob Change Biol 21(8):3087–101.Google Scholar
  25. Grace JR. 1986. The influence of gypsy moth on the composition and nutrient content of litter fall in a Pennsylvania oak forest. For Sci 32(4):855–70.Google Scholar
  26. Gray DR. 2013. The influence of forest composition and climate on outbreak characteristics of the spruce budworm in eastern Canada. Can J For Res 43:1181–95.Google Scholar
  27. Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke HH, Weiner J, Wiegand T, DeAngelis DL. 2005. Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310(5750):987–91.Google Scholar
  28. Grondin P, Ansseau C, Bélanger L, Bergeron JF, Bergeron Y, Bouchard A, Brisson J, De Grandpré L, Gagnon G, Lavoie C, Lessard G. 1996. Écologie forestière. Manuel de foresterie. In: Bérard J, Côté M, Eds. Presses de l’Université Laval, Sainte-Foy, Qué, pp 133–279.Google Scholar
  29. Gower ST, Vogel JG, Norman JM, Kucharik CJ, Steele SJ, Stow TK. 1997. Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. J Geophys Res Atmos 102(D24):29029–41.Google Scholar
  30. Hall JP, Moody BH. 1994. Forest depletions caused by insects and diseases in Canada, 1982–1987. Can For Serv Inf Rep STX-8.Google Scholar
  31. Hennigar CR, MacLean DA, Quiring DT, Kershaw JA Jr. 2008. Differences in spruce budworm defoliation among balsam fir and white, red, and black spruce. For Sci 54(2):158–66.Google Scholar
  32. Hicke JA, Allen CD, Desai AR, Dietze MC, Hall RJ, Hogg EHT, Kashian DM, Moore D, Raffa KF, Sturrock RN, Vogelmann J. 2012. Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Glob Change Biol 18(1):7–34.Google Scholar
  33. Jactel H, Brockerhoff FOREXAMPLE. 2007. Tree diversity reduces herbivory by forest insects. Ecol Lett 10(9):835–48.PubMedGoogle Scholar
  34. James PM, Fortin MJ, Fall A, Kneeshaw D, Messier C. 2007. The effects of spatial legacies following shifting management practices and fire on boreal forest age structure. Ecosystems 10(8):1261–77.Google Scholar
  35. Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L. 2008. Mountain pine beetle and forest carbon feedback to climate change. Nature 452(7190):987.PubMedGoogle Scholar
  36. Kurz WA, Dymond CC, White TM, Stinson G, Shaw CH, Rampley GJ, Smyth C, Simpson BN, Neilson ET, Trofymow JA, Metsaranta J. 2009. CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol Modell 220(4):480–504.Google Scholar
  37. Landry JS, Parrott L, Price DT, Ramankutty N, Matthews HD. 2016. Modelling long-term impacts of mountain pine beetle outbreaks on merchantable biomass, ecosystem carbon, albedo, and radiative forcing. Biogeosciences. 13(18):5277–95.Google Scholar
  38. le Mellec A, Michalzik B. 2008. Impact of a pine lappet (Dendrolimus pini) mass outbreak on C and N fluxes to the forest floor and soil microbial properties in a Scots pine forest in Germany. Can J For Res 38(7):1829–41.Google Scholar
  39. Liang L, Li X, Huang Y, Qin Y, Huang H. 2017. Integrating remote sensing, GIS and dynamic models for landscape-level simulation of forest insect disturbance. Ecol Modell 354:1–10.Google Scholar
  40. Liu Z, Peng C, Louis D, Candau JN, Zhou X, Kneeshaw D. 2018. Development of a new TRIPLEX-Insect model for simulating the effect of spruce budworm on forest carbon dynamics. Forests 9(9):513.Google Scholar
  41. Lord G, Faucher A. Berger JP. 2009. Normes de cartographie écoforestière: troisième inventaire écoforestier. Ministère des Ressources naturelles et de la Faune, Forêt Québec, Direction des inventaires forestiers.Google Scholar
  42. MacLean DA. 1980. Vulnerability of fir–spruce stands during uncontrolled spruce budworm outbreaks: a review and discussion. For Chron 56:213–21.Google Scholar
  43. MacLean DA. 1996. Forest management strategies to reduce spruce budworm damage in the Fundy Model Forest. For Chron 72(4):399–405.Google Scholar
  44. MacLean DA. 2016. Impacts of insect outbreaks on tree mortality, productivity, and stand development. Can Entomol 148:S138–59.Google Scholar
  45. Meddens AJ, Hicke JA, Ferguson CA. 2012. Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States. Ecol Appl 22(7):1876–91.PubMedGoogle Scholar
  46. Mediene S, Jordan MO, Pagès L, Lebot J, Adamowicz S. 2002. The influence of severe shoot pruning on growth, carbon and nitrogen status in young peach trees (Prunus persica). Tree Physiol 22(18):1289–96.PubMedGoogle Scholar
  47. Meyer G, Black TA, Jassal RS, Nesic Z, Coops NC, Christen A, Fredeen AL, Spittlehouse DL, Grant NJ, Foord VN, Bowler R. 2018. Simulation of net ecosystem productivity of a lodgepole pine forest after mountain pine beetle attack using a modified version of 3-PG. For Ecol Manag 412:41–52.Google Scholar
  48. Ministere des Ressources naturelles et de la Faune du Quebec. 2006. Aires infestees par la tordeuse des bourgeons de l’epinette au Quebec en 2006. Direction de la protection des forets du Quebec, Quebec, Canada.Google Scholar
  49. Ministere des Ressources naturelles et de la Faune du Quebec. 2018. Aires infestees par la tordeuse des bourgeons de l’epinette au Quebec en 2018. Direction de la protection des forets du Quebec, Quebec, Canada.Google Scholar
  50. Moore DJ, Trahan NA, Wilkes P, Quaife T, Stephens BB, Elder K, Desai AR, Negron J, Monson RK. 2013. Persistent reduced ecosystem respiration after insect disturbance in high elevation forests. Ecol Lett 16(6):731–7.PubMedPubMedCentralGoogle Scholar
  51. Nealis VG. 2015. Comparative ecology of conifer-feeding spruce budworms (Lepidoptera: Tortricidae). Can Entomol 148(S1):S33–57.Google Scholar
  52. Ohtsuka T, Mo W, Satomura T, Inatomi M, Koizumi H. 2007. Biometric based carbon flux measurements and net ecosystem production (NEP) in a temperate deciduous broad-leaved forest beneath a flux tower. Ecosystems 10(2):324–34.Google Scholar
  53. Parton W, Scurlock JMO, Ojima DS, Gilmanov TG, Scholes RJ, Schimel DS, Kirchner T, Menaut J-C, Seastedt T, Moya E, Kamnalrut A, Kinyamario JI. 1993. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Glob Biogeochem Cycles 7:785–809.Google Scholar
  54. Peng C, Liu J, Dang Q, Apps MJ, Jiang H. 2002. TRIPLEX: a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics. Ecol Model 153:109–30.Google Scholar
  55. Pureswaran DS, De Grandpré L, Paré D, Taylor A, Barrette M, Morin H, Régnière J, Kneeshaw DD. 2015. Climate-induced changes in host tree–insect phenology may drive ecological state-shift in boreal forests. Ecology 96(6):1480–91.Google Scholar
  56. Régnière J. 1996. A generalized approach to landscape-wide seasonal forecasting with temperature-driven simulation models. Environ Entomol 25:869–81.Google Scholar
  57. Régnière J, St-Amant R. 2007. Stochastic simulation of daily air temperature and precipitation from monthly normal in North America north of Mexico. Int J Biometeorol 51:415–30.PubMedGoogle Scholar
  58. Schooley HO. 1978. Effects of spruce budworm on cone production by balsam fir. For Chron 54(6):298–301.Google Scholar
  59. Seidl R, Fernandes PM, Fonseca TF, Gillet F, Jönsson AM, Merganičová K, Netherer S, Arpaci A, Bontemps JD, Bugmann H, González-Olabarria JR. 2011. Modelling natural disturbances in forest ecosystems: a review. Ecol Modell 222(4):903–24.Google Scholar
  60. Senf C, Seidl R, Hostert P. 2017. Remote sensing of forest insect disturbances: current state and future directions. Int J Appl Earth Obs Geoinform 60:49–60.Google Scholar
  61. Steele S, Gower S, Vogel J, Norman J. 1997. Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiol 17:577–88.PubMedGoogle Scholar
  62. Sturtevant BR, Cooke BJ, Kneeshaw DD, MacLean DA. 2015. Modeling insect disturbance across forested landscapes: insights from the spruce budworm. In: Simulation Modeling of Forest Landscape Disturbances. Cham: Springer. pp 93–134.Google Scholar
  63. Sun JF, Peng CH, McCaughey H, Zhou XL, Thomas V, Berninger F, St-Onge B, Hua D. 2008. Simulating carbon exchange of Canadian boreal forests II. Comparing the carbon budgets of a boreal mixedwood stand to a black spruce forest stand. Ecol Modell 219:276–86.Google Scholar
  64. Tarnocai C. Lacelle B. 1996. Soil organic carbon digital database of Canada. Eastern Cereal and Oilseed Research Centre, Research Branch (database) , Agriculture and Agri-Food Canada, Ottawa.Google Scholar
  65. Tang J, Luyssaert S, Richardson AD, Kutsch W. Janssens IA. 2014. Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth. In: Proceedings of the national academy of sciences, p 201320761.Google Scholar
  66. Twilley RR, Castañeda-Moya E, Rivera-Monroy VH, Rovai A. 2017. Productivity and carbon dynamics in mangrove wetlands. In: Mangrove ecosystems: a global biogeographic perspective. Cham: Springer, pp 113–162Google Scholar
  67. Zhang X, Lei Y, Ma Z, Kneeshaw D, Peng C. 2014. Insect-induced tree mortality of boreal forests in eastern Canada under a changing climate. Ecol Evol 4(12):2384–94.PubMedPubMedCentralGoogle Scholar
  68. Zhang Y, Chen W, Smith SL, Riseborough DW, Cihlar J. 2005. Soil temperature in Canada during the twentieth century: Complex responses to atmospheric climate change. J Geophys Res Atmos 110(D3).Google Scholar
  69. Zhou X, Peng C, Dang Q-L, Sun J, Wu H, Hua D. 2008. Simulating carbon exchange in Canadian Boreal forests: I. Model structure, validation, and sensitivity analysis. Ecol Modell 219:287–99.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zelin Liu
    • 1
  • Changhui Peng
    • 1
    Email author
  • Louis De Grandpré
    • 2
  • Jean-Noël Candau
    • 3
  • Timothy Work
    • 1
  • Chunbo Huang
    • 1
    • 4
  • Daniel Kneeshaw
    • 1
  1. 1.Department of Biological SciencesUniversity of Québec at MontrealMontrealCanada
  2. 2.Laurentian Forestry Centre, Canadian Forest ServiceNatural Resources CanadaQuebecCanada
  3. 3.Great Lakes Forestry Centre, Canadian Forest ServiceNatural Resources CanadaPeterboroughCanada
  4. 4.College of Horticulture and Forestry Sciences, Hubei Engineering Technology Research Center for Forestry InformationHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations