pp 1–13 | Cite as

Community Trait Distribution Across Environmental Gradients

  • Kasia M. KenitzEmail author
  • Andre W. Visser
  • Mark D. Ohman
  • Michael R. Landry
  • Ken H. Andersen


Variability in community composition is often attributed to underlying differences in physical environments. However, predator–prey interactions can play an equally important role in structuring communities. Although environmental differences select for different species assemblages, less is known about their impacts on trait compositions. We develop a trait-based analysis of plankton communities of the southern California Current System across multiple trophic levels, from bacteria to mesozooplankton, and over a gradient of environmental conditions, from the oligotrophic open ocean to coastal upwelling. Across a factor of four differences in total community biomass, we observe similarities in the size structure along the environmental gradient, with the most pronounced departures from proportional variations in the biomasses found in the largest protists (> 40 µm). Differences in the trait distributions emerge within a small range of size groups: greater biomass contribution of larger autotrophs (> 10 µm) is observed only for the upwelling region.


Activity traits California current community structure feeding mode multi-trophic interactions plankton resource acquisition size distribution upwelling 



Data and participation from CCE-LTER were supported by US National Science Foundation Grants OCE-04-17616 and OCE-10-26607. This work was supported by the Centre for Ocean Life, a VKR Centre of excellence funded by the Villum Foundation, and the Gordon and Betty Moore Foundation (#5479). The authors thank Philipp Brun for his assistance and guidance during the application of the statistical analysis and Thomas Kiørboe and Martin Lindegren for insightful discussions during concept development. The authors would also like to acknowledge Emma Tovar for her continued efforts in conducting the ZooScan analysis for the CCE-LTER programme.

Supplementary material

10021_2018_314_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)
10021_2018_314_MOESM2_ESM.pdf (947 kb)
Supplementary material 2 (PDF 947 kb)


  1. Andersen KH, Berge T, Gonçalves RJ, Hartvig M, Heuschele J, Hylander S, Jacobsen NS, Lindemann C, Martens EA, Neuheimer AB, Olsson KH, Palacz A, Prowe AEF, Sainmont J, Traving SJ, Visser AW, Wadhwa N, Kiørboe T. 2016. Characteristic sizes of life in the oceans, from bacteria to whales. Ann Rev Mar Sci 8:217–41.CrossRefGoogle Scholar
  2. Andersen KHH, Beyer JEE. 2006. Asymptotic size determines species abundance in the marine size spectrum. Am Nat 168:54–61.CrossRefGoogle Scholar
  3. Armstrong R. 1999. Stable model structures for representing biogeochemical diversity and size spectra in plankton communities. J Plankton Res 21:445–64. Scholar
  4. Barton AD, Finkel ZV, Ward BA, Johns DG, Follows MJ. 2013. On the roles of cell size and trophic strategy in North Atlantic diatom and dinoflagellate communities. Limnol Oceanogr 58:254–66.CrossRefGoogle Scholar
  5. Batchelder HP, Edwards CA, Powell TM. 2002. Individual-based models of copepod populations in coastal upwelling regions: Implications of physiologically and environmentally influenced diel vertical migration on demographic success and nearshore retention. Prog Oceanogr 53:307–33.CrossRefGoogle Scholar
  6. Boenigk J, Arndt H. 2000. Particle handling during interception feeding by four species of heterotrophic nanoflagellates. J Eukaryot Microbiol 47:350–8.CrossRefGoogle Scholar
  7. Brun P, Payne MR, Kiørboe T. 2016. Trait biogeography of marine copepods—an analysis across scales. Ecol Lett 19:1403–13.CrossRefGoogle Scholar
  8. Castellani C, Irigoien X, Harris RP, Lampitt RS. 2005. Feeding and egg production of Oithona similis in the North Atlantic. Mar Ecol Prog Ser 288:173–82.CrossRefGoogle Scholar
  9. Chakraborty S, Nielsen LT, Andersen KH. 2017. Trophic strategies of unicellular plankton. Am Nat 189:E77–90.CrossRefGoogle Scholar
  10. Checkley DM, Barth JA. 2009. Patterns and processes in the California Current System. Prog Oceanogr 83:49–64.CrossRefGoogle Scholar
  11. Colebrook JM. 1977. Annual fluctuations in biomass of taxonomic groups of zooplankton in the California Current 1955–1959. Fish Bull 75:357–68.Google Scholar
  12. Cyr H, Pace ML. 1993. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361:148–50.CrossRefGoogle Scholar
  13. Falster DS, Brännström Å, Westoby M, Dieckmann U. 2017. Multitrait successional forest dynamics enable diverse competitive coexistence. Proc Natl Acad Sci 114:E2719–E2728.CrossRefGoogle Scholar
  14. Fenchel T. 1980. Relation between particle size selection and clearance in suspension-feeding ciliates. Limnol Oceanogr 25:733–8.CrossRefGoogle Scholar
  15. Follows MJ, Dutkiewicz S. 2011. Modeling diverse communities of marine microbes. Ann Rev Mar Sci 3:427–51.CrossRefGoogle Scholar
  16. Garrison DL, Gowing MM, Hughes MP, Campbell L, Caron DA, Dennett MR, Shalapyonok A, Olson RJ, Landry MR, Brown SL, Liu H-B, Azam F, Steward GF, Ducklow HW, Smith DC. 2000. Microbial food web structure in the Arabian Sea: a US JGOFS study. Deep Sea Res Part II 47:1387–422.CrossRefGoogle Scholar
  17. Gerritsen J, Strickler JR. 1977. Encouter probabilities and community structure in Zooplankton: a mathematical model. J Fish Res Board Can 34:73–82.CrossRefGoogle Scholar
  18. Gilmer RW, Harbison GR. 1986. Morphology and field behavior of pteropod molluscs: Feeding methods in the families Cavoliniidae, Limacinidae and Peraclididae (Gastropoda: Thecosomata). Mar Biol 91:47–57.CrossRefGoogle Scholar
  19. Gonzalez JM, Sherr EB, Sherr BF. 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl Environ Microbiol 56:583–9.PubMedPubMedCentralGoogle Scholar
  20. Gorsky G, Ohman MD, Picheral M, Gasparini S, Stemmann L, Romagnan JB, Cawood A, Pesant S, García-Comas C, Prejger F. 2010. Digital zooplankton image analysis using the ZooScan integrated system. J Plankton Res 32:285–303.CrossRefGoogle Scholar
  21. Gravel D, Albouy C, Thuiller W. 2016. The meaning of functional trait composition of food webs for ecosystem functioning. Phil Trans R Soc B 371:20150268.CrossRefGoogle Scholar
  22. Hartmann M, Grob C, Tarran GA, Martin AP, Burkill PH, Scanlan DJ, Zubkov MV. 2012. Mixotrophic basis of Atlantic oligotrophic ecosystems. Proc Natl Acad Sci U S A 109:5756–60.CrossRefGoogle Scholar
  23. Irigoien X, Huisman J, Harris RP. 2004. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429:863–7.CrossRefGoogle Scholar
  24. Johnson CL, Checkley DM. 2004. Vertical distribution of diapausing Calanus pacificus (Copepoda) and implications for transport in the California undercurrent. Prog Oceanogr 62:1–13.CrossRefGoogle Scholar
  25. Kenitz KM, Visser AW, Mariani P, Andersen KH. 2017. Seasonal succession in zooplankton feeding traits reveals trophic trait coupling. Limnol Oceanogr 62:1184–97.CrossRefGoogle Scholar
  26. Kiørboe T. 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv Mar Biol 29:1–72.CrossRefGoogle Scholar
  27. Kiørboe T. 2008. Optimal swimming strategies in mate-searching pelagic copepods. Oecologia 155:179–92.CrossRefGoogle Scholar
  28. Kiørboe T. 2011. How zooplankton feed: mechanisms, traits and trade-offs. Biol Rev 86:311–39.CrossRefGoogle Scholar
  29. Lavaniegos BE, Ohman MD. 2007. Coherence of long-term variations of zooplankton in two sectors of the California Current System. Prog Oceanogr 75:42–69.CrossRefGoogle Scholar
  30. Lynn RJ, Simpson JJ. 1987. The California Current system: the seasonal variability of its physical characteristics. J Geophys Res 92:12947.CrossRefGoogle Scholar
  31. MacGinitie GE. 1939. The method of feeding of tunicates. Biol Bull 77:443–7.CrossRefGoogle Scholar
  32. Margalef R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1:493–509.Google Scholar
  33. McGill BJ, Enquist BJ, Weiher E, Westoby M. 2006. Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–85.CrossRefGoogle Scholar
  34. Mitchell JG, Pearson L, Bonazinga A, Dillon S, Khouri H, Paxinos R. 1995. Long lag times and high velocities in the motility of natural assemblages of marine bacteria. Appl Environ Microbiol 61:877–82.PubMedPubMedCentralGoogle Scholar
  35. Mullin MM. 1998. Biomasses of large-celled phytoplankton and their relation to the nitricline and grazing in the California Current System off Southern California, 1994–1996. CalCOFI Reports 39:117–23.Google Scholar
  36. Ohman MD. 1990. The demographic benefits of diel vertical migration by zooplankton. Ecol Monogr 60:257–81.CrossRefGoogle Scholar
  37. Ohman MD, Romagnan J-B. 2016. Nonlinear effects of body size and optical attenuation on diel vertical migration by zooplankton. Limnol Oceanogr 61:765–70.CrossRefGoogle Scholar
  38. Pahlow M, Riebesell U, Wolf-Gladrow DA. 1997. Impact of cell shape and chain formation on nutrient acquisition by marine diatoms. Limnol Oceanogr 42:1660–72.CrossRefGoogle Scholar
  39. Peláez J, McGowan JA. 1986. Phytoplankton pigment patterns in the California Current as determined by satellite. Limnol Oceanogr 31:927–50.CrossRefGoogle Scholar
  40. Peterson W. 1998. Life cycle strategies of copepods in coastal upwelling zones. J Mar Syst 15:313–26.CrossRefGoogle Scholar
  41. Pfister G, Arndt H. 1998. Food selectivity and feeding behaviour in omnivorous filter-feeding ciliates: A case study for Stylonychia. Eur J Protistol 34:446–57.CrossRefGoogle Scholar
  42. Polis GA. 1999. Are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos 86:3–15.CrossRefGoogle Scholar
  43. Raven JA. 1986. Physiological consequences of extremely small size for autotrophic organisms in the sea. In: Platt T, Li WKW, editors. Photosynthetic Picoplankton. Can Bull Fish Aquat Sci. pp 1–70.Google Scholar
  44. Rykaczewski RR, Checkley DM. 2008. Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc Natl Acad Sci 105:1965–70.CrossRefGoogle Scholar
  45. Saiz E, Kiørboe T. 1995. Predatory and suspension feeding of the copepod Acartia tonsa in turbulent environments. Mar Ecol Prog Ser 122:147–58.CrossRefGoogle Scholar
  46. San Martin E, Harris RP, Irigoien X. 2006. Latitudinal variation in plankton size spectra in the Atlantic Ocean. Deep Sea Res Part II 53:1560–72.CrossRefGoogle Scholar
  47. Sheldon RW, Prakash A, Sutcliffe WH. 1972. The size distribution of particles in the ocean. Limnol Oceanogr 17:327–40.CrossRefGoogle Scholar
  48. Shurin JB, Gruner DS, Hillebrand H. 2006. All wet or dried up? Real differences between aquatic and terrestrial food webs. Proc R Soc B Biol Sci 273:1–9.CrossRefGoogle Scholar
  49. van Bodegom PM, Douma JC, Verheijen LM. 2014. A fully traits-based approach to modeling global vegetation distribution. Proc Natl Acad Sci U S A 111:13733–8.CrossRefGoogle Scholar
  50. van Someren Gréve H, Almeda R, Kiørboe T. 2017. Motile behavior and predation risk in planktonic copepods. Limnol Oceanogr 62:1810–24.CrossRefGoogle Scholar
  51. Taylor AG, Landry MR. 2018. Phytoplankton biomass and size structure across trophic gradients in the southern California Current and adjacent ocean ecosystems. Mar Ecol Prog Ser 592:1–17.CrossRefGoogle Scholar
  52. Taylor AG, Landry MR, Selph KE, Wokuluk JJ. 2015. Temporal and spatial patterns of microbial community biomass and composition in the Southern California Current Ecosystem. Deep Sea Res Part II 112:117–28.CrossRefGoogle Scholar
  53. Tilman D. 1990. Constraints and tradeoffs: toward a predictive theory of competition and succession. Oikos 58:3–15.CrossRefGoogle Scholar
  54. Tönnesson K, Tiselius P. 2005. Diet of the chaetognaths Sagitta setosa and S. elegans in relation to prey abundance and vertical distribution. Mar Ecol Prog Ser 289:177–90.CrossRefGoogle Scholar
  55. Verity PG, Smetacek V. 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar Ecol Prog Ser 130:277–93.CrossRefGoogle Scholar
  56. Ward BA, Dutkiewicz S, Barton AD, Follows MJ. 2011. Biophysical aspects of resource acquisition and competition in algal mixotrophs. Am Nat 178:98–112.CrossRefGoogle Scholar
  57. Westoby M, Wright IJ. 2006. Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–8.CrossRefGoogle Scholar
  58. Zaret TM, Suffern S. 1976. Vertical migration in zooplankton as a predator avoidance mechanism. Limnol Oceanogr 21:804–13.CrossRefGoogle Scholar
  59. Zubkov MV, Sleigh MA, Burkill PH, Leakey RJG. 2000. Picoplankton community structure on the Atlantic Meridional Transect: A comparison between seasons. Prog Oceanogr 45:369–86.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Ocean LifeDTU AquaKgs. LyngbyDenmark
  2. 2.Scripps Institution of OceanographyLa JollaUSA

Personalised recommendations