Advertisement

Ecosystems

pp 1–17 | Cite as

Effects of Bark Beetle Disturbance on Soil Nutrient Retention and Lake Chemistry in Glacial Catchment

  • Filip Oulehle
  • Richard F. Wright
  • Miroslav Svoboda
  • Radek Bače
  • Karel Matějka
  • Jiří Kaňa
  • Jakub Hruška
  • Raoul-Marie Couture
  • Jiří Kopáček
Article

Abstract

Forest ecosystems worldwide are subjected to human-induced stressors, including eutrophication and acidification, and to natural disturbances (for example, insect infestation, windstorms, fires). The occurrence of the later is expected to increase due to the ongoing climate change. These multi-stressor forcings modify ecosystem biogeochemistry, including the retention of limiting nutrients, with implications for terrestrial and aquatic biodiversity. Here we present whole ecosystem nutrient (N, Ca, Mg, K) mass balances in the forested catchment of Plešné Lake, CZ, which has undergone transient changes linked to the recovery from anthropogenic acidification and to the forest disturbances caused by severe infestations by the bark beetle (Ips typographus). Measured fluxes and storage of nutrients in the lake-catchment ecosystem were used to constrain the process-oriented biogeochemical model MAGIC (Model of Acidification of Groundwater In Catchments). Simulated lake water chemistry and changes in soil nutrient pools fitted observed data and revealed that (1) the ecosystem N retention declined, thus nitrate leaching increased for 10 years following the bark beetle disturbance, with transient adverse effects on the acid–base status of lake water, (2) the kinetics of nutrient mineralisation from decaying biomass coupled with nutrient immobilisation in regrowing vegetation constrained the magnitude and duration of ecosystem losses of N, Ca and Mg, (3) the excess of mineralised base cations from decomposing biomass replenished the soil cation exchange matrix, which led to increased soil base saturation, and (4) the improvement of the catchment soil acid–base status led to an increase of lake water pH and acid neutralising capacity. Forested ecosystems underlain by nutrient-poor soils and bedrock are prone to human-induced damages caused by acidification and eutrophication, and any natural disturbance may further lead to nutrient imbalances. We demonstrated that in this natural forest ecosystem protected from human intervention, disturbances together with natural post-disturbance vegetation recovery have temporally positive effects on the nutrient stores in the soil.

Keywords

bark beetle disturbance nitrogen retention eutrophication acidification base cations base saturation 

Notes

Acknowledgements

We thank the authorities of the Šumava National Park for their administrative support. This study was supported by (1) the Czech Science Foundation (Project No. P504-17-15229S), data on soil, water and litter chemistry and No. P504-18-17295S, data on model parametrisation; (2) the Research Council of Norway for the Project 244558/E50 “Lakes in Transition” led by NIVA; (3) and by the Ministry of Education, Youth and Sports of the Czech Republic—MEYS (Projects LM2015075, EF16_013/0001782) and the National Sustainability Program I (NPU I), Grant Number LO1415.

Compliance with Ethical Standards

Conflict of interest

Authors have no conflict of interests.

Supplementary material

10021_2018_298_MOESM1_ESM.docx (917 kb)
Supplementary material 1 (DOCX 916 kb)

References

  1. Bače R, Svoboda M, Pouska V, Janda P, Červenka J. 2012. Natural regeneration in Central-European subalpine spruce forests: Which logs are suitable for seedling recruitment? For Ecol Manage 266:254–62. http://linkinghub.elsevier.com/retrieve/pii/S0378112711007109. Last accessed 22/01/2018.
  2. Bače R, Schurman JS, Brabec M, Čada V, Després T, Janda P, Lábusová J, Mikoláš M, Morrissey RC, Mrhalová H, Nagel TA, Nováková MH, Seedre M, Synek M, Trotsiuk V, Svoboda M. 2017. Long-term responses of canopy–understorey interactions to disturbance severity in primary Picea abies forests. J Veg Sci 28(6):1128–1139.Google Scholar
  3. Bade C, Jacob M, Leuschner C, Hauck M. 2015. Chemical properties of decaying wood in an old-growth spruce forest and effects on soil chemistry. Biogeochemistry 122:1–13. http://link.springer.com/10.1007/s10533-014-0015-x. Last accessed 22/01/2018.
  4. Bentz BJ, Régnière J, Fettig CJ, Hansen EM, Hayes JL, Hicke JA, Kelsey RG, Negrón JF, Seybold SJ. 2010. Climate Change and Bark Beetles of the Western United States and Canada: Direct and Indirect Effects. Bioscience 60:602–13. https://academic.oup.com/bioscience/article-lookup/doi/10.1525/bio.2010.60.8.6. Last accessed 05/01/2018.
  5. Berg B, Laskowski R. 2006. Litter decomposition: a guide to carbon and nutrient turnover. Amsterdam: Elsevier.Google Scholar
  6. Beudert B, Bässler C, Thorn S, Noss R, Schröder B, Dieffenbach-Fries H, Foullois N, Müller J. 2015. Bark beetles increase biodiversity while maintaining drinking water quality. Conserv Lett 8:272–81. http://doi.wiley.com/10.1111/conl.12153. Last accessed 05/01/2018.
  7. Boxman AW, van der Ven PJM, Roelofs JGM. 1998. Ecosystem recovery after a decrease in nitrogen input to a Scots pine stand at Ysselsteyn, the Netherlands. For Ecol Manage 101:155–64.CrossRefGoogle Scholar
  8. Brůna J, Wild J, Svoboda M, Heurich M, Müllerová J. 2013. Impacts and underlying factors of landscape-scale, historical disturbance of mountain forest identified using archival documents. For Ecol Manage 305:294–306. http://linkinghub.elsevier.com/retrieve/pii/S037811271300385X. Last accessed 04/06/2018.
  9. Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–33. http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=15&SID=T23fQPb4p91x79guaDe&page=1&doc=1. Last accessed 30/11/2015.
  10. Cosby BJ, Ferrier RC, Jenkins A, Wright RF. 2001. Modelling the effects of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrol Earth Syst Sci 5:499–518.CrossRefGoogle Scholar
  11. Cosby BJ, Hornberger GM, Galloway JN, Wright RF. 1985a. Modelling the effects of acid deposition: estimation of long term water quality responses in a small forested catchment. Water Resour Res 21:1591–601.CrossRefGoogle Scholar
  12. Cosby BJ, Hornberger GM, Galloway JN, Wright RF. 1985b. Time scales of catchment acidification: a quantitative model for estimating freshwater acidification. Environ Sci Technol 19:1144–9.CrossRefPubMedGoogle Scholar
  13. Čada V, Morrissey RC, Michalová Z, Bače R, Janda P, Svoboda M. 2016. Frequent severe natural disturbances and non-equilibrium landscape dynamics shaped the mountain spruce forest in central Europe. For Ecol Manage 363:169–78. http://linkinghub.elsevier.com/retrieve/pii/S0378112715007501. Last accessed 05/01/2018.
  14. Edburg SL, Hicke JA, Brooks PD, Pendall EG, Ewers BE, Norton U, Gochis D, Gutmann ED, Meddens AJ. 2012. Cascading impacts of bark beetle-caused tree mortality on coupled biogeophysical and biogeochemical processes. Front Ecol Environ 10:416–24. http://doi.wiley.com/10.1890/110173. Last accessed 09/11/2012.
  15. Garmo ØA, Skjelkvåle BL, de Wit HA, Colombo L, Curtis C, Fölster J, Hoffmann A, Hruška J, Høgåsen T, Jeffries DS, Keller WB, Krám P, Majer V, Monteith DT, Paterson AM, Rogora M, Rzychon D, Steingruber S, Stoddard JL, Vuorenmaa J, Worsztynowicz A. 2014. Trends in Surface Water Chemistry in Acidified Areas in Europe and North America from 1990 to 2008. Water, Air, Soil Pollut 225:1880. http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=5&SID=X13ykSaaoD3AN4oRy9r&page=2&doc=16. Last accessed 11/04/2016.
  16. Goodale CL, Aber JD, Vitousek PM, McDowell WH. 2005. Long-term decreases in stream nitrate: successional causes unlikely; Possible links to DOC? ECOSYSTEMS 8:334–7.CrossRefGoogle Scholar
  17. Grégoire J-C, Raffa KF, Lindgren BS. 2015. Economics and politics of bark beetles. In: Bark beetles. Elsevier. pp 585–613. http://linkinghub.elsevier.com/retrieve/pii/B9780124171565000150. Last accessed 05/01/2018.
  18. Harvey BJ, Donato DC, Turner MG. 2014. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies. Proc Natl Acad Sci 111:15120–5. http://www.pnas.org/lookup/doi/10.1073/pnas.1411346111. Last accessed 05/01/2018.
  19. Helliwell RC, Wright RF, Jackson-Blake LA, Ferrier RC, Aherne J, Cosby BJ, Evans CD, Forsius M, Hruska J, Jenkins A, Kram P, Kopáček J, Majer V, Moldan F, Posch M, Potts JM, Rogora M, Schöpp W. 2014. Assessing Recovery from Acidification of European Surface Waters in the Year 2010: Evaluation of Projections Made with the MAGIC Model in 1995. Environ Sci Technol 48:13280–8. http://pubs.acs.org/doi/10.1021/es502533c. Last accessed 01/03/2018.
  20. Holub SM, Spears JDH, Lajtha K. 2001. A reanalysis of nutrient dynamics in coniferous coarse woody debris. Can J For Res 31:1894–902. http://www.nrc.ca/cgi-bin/cisti/journals/rp/rp2_abst_e?cjfr_x01-125_31_ns_nf_cjfr31-01. Last accessed 22/01/2018.
  21. Huber C. 2005. Long lasting nitrate leaching after bark beetle attack in the highlands of the Bavarian Forest National Park. J Environ Qual 34:1772–9. https://www.agronomy.org/publications/jeq/abstracts/34/5/1772. Last accessed 27/11/2012.
  22. Janda P, Svoboda M, Bače R, Čada V, Peck JE. 2014. Three hundred years of spatio-temporal development in a primary mountain Norway spruce stand in the Bohemian Forest, central Europe. For Ecol Manage 330:304–11. http://linkinghub.elsevier.com/retrieve/pii/S0378112714004198. Last accessed 22/01/2018.
  23. Jonášová M, Prach K. 2004. Central-European mountain spruce (Picea abies (L.) Karst.) forests: regeneration of tree species after a bark beetle outbreak. Ecol Eng 23:15–27. http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=38&SID=Z1BOpmjn59f5H3l7I8C&page=1&doc=4. Last accessed 19/11/2012.
  24. Kaňa J, Tahovská K, Kopáček J. 2012. Response of soil chemistry to forest dieback after bark beetle infestation. Biogeochemistry 113:1–15. http://link.springer.com/article/10.1007/s10533-012-9765-5/fulltext.html. Last accessed 19/11/2012.
  25. Kaňa J, Tahovská K, Kopáček J, Šantrůčková H. 2015. Excess of organic carbon in mountain spruce forest soils after bark beetle outbreak altered microbial N transformations and mitigated N-saturation. Liang W, editor. PLoS One 10:e0134165. http://dx.plos.org/10.1371/journal.pone.0134165. Last accessed 09/01/2018.
  26. Kopáček J, Brzákova M, Hejzlar J, Nedoma J, Porcal P, Vrba J. 2004. Nutrient cycling in a strongly acidified mesotrophic lake. Limnol Oceanogr 49:1202–13. http://doi.wiley.com/10.4319/lo.2004.49.4.1202. Last accessed 09/01/2018.
  27. Kopáček J, Cudlín P, Fluksová H, Kaňa J, Picek T, Šantrůčková H, Vaněk D. 2015. Dynamics and composition of litterfall in an unmanaged norway spruce (Picea abies) forest after bark-beetle outbreak. http://www.borenv.net/BER/pdfs/ber20/ber20-305.pdf. Last accessed 09/01/2018.
  28. Kopáček J, Fluksová H, Hejzlar J, Kaňa J, Porcal P, Turek J. 2017. Changes in surface water chemistry caused by natural forest dieback in an unmanaged mountain catchment. Sci Total Environ 584–585:971–81. http://linkinghub.elsevier.com/retrieve/pii/S0048969717301584. Last accessed 09/01/2018.
  29. Kopáček J, Hejzlar J, Krám P, Oulehle F, Posch M. 2016. Effect of industrial dust on precipitation chemistry in the Czech Republic (Central Europe) from 1850 to 2013. Water Res 103:30–7.CrossRefPubMedGoogle Scholar
  30. Kopáček J, Hejzlar J, Mosello R. 2000. Estimation of organic acid anion concentrations and evaluation of charge balance in atmospherically acidified colored waters. Water Res 34:3598–606. http://linkinghub.elsevier.com/retrieve/pii/S0043135400001093. Last accessed 11/01/2018.
  31. Kopáček J, Kaňa J, Šantrůčková H, Porcal P, Hejzlar J, Picek T, Veselý J. 2002. Physical, chemical, and biochemical characteristics of soils in watersheds of the Bohemian Forest lakes: I. Plešné Lake (basin of the Jezerní Potok stream). Silva Gabreta 8:43–66.Google Scholar
  32. Kopáček J, Posch M, Hejzlar J, Oulehle F, Volková A. 2012. An elevation-based regional model for interpolating sulphur and nitrogen deposition. Atmos Environ 50:287–96.CrossRefGoogle Scholar
  33. Kopáček J, Turek J, Hejzlar J, Porcal P. 2011. Bulk deposition and throughfall fluxes of elements in the Bohemian Forest (central Europe) from 1998 to 2009. Boreal Environ Res 16:495–508. http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=29&SID=U1mf@@OiiNLnfDpgiGj&page=1&doc=1. Last accessed 20/11/2012.
  34. Kopáček J, Veselý J, Stuchlík E. 2001. Sulphur and nitrogen fluxes and budgets in the Bohemian Forest and Tatra Mountains during the Industrial Revolution (1850-2000). Hydrol Earth Syst Sci 5:391–405.CrossRefGoogle Scholar
  35. Krüger I, Muhr J, Hartl-Meier C, Schulz C, Borken W. 2014. Age determination of coarse woody debris with radiocarbon analysis and dendrochronological cross-dating. Eur J For Res 133:931–9. http://link.springer.com/10.1007/s10342-014-0810-x. Last accessed 22/01/2018.
  36. Laiho R, Prescott CE. 2004. Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Can J For Res 34:763–77. http://www.nrcresearchpress.com/doi/10.1139/x03-241. Last accessed 22/01/2018.
  37. Lausch A, Fahse L, Heurich M. 2011. Factors affecting the spatio-temporal dispersion of Ips typographus (L.) in Bavarian Forest National Park: a long-term quantitative landscape-level analysis. For Ecol Manage 261:233–45. http://linkinghub.elsevier.com/retrieve/pii/S0378112710006134. Last accessed 09/01/2018.
  38. Lombardi F, Cherubini P, Lasserre B, Tognetti R, Marchetti M. 2008. Tree rings used to assess time since death of deadwood of different decay classes in beech and silver fir forests in the central Apennines (Molise, Italy). Can J For Res 38:821–33. http://www.nrcresearchpress.com/doi/10.1139/X07-195. Last accessed 22/01/2018.
  39. Macek M, Wild J, Kopecký M, Červenka J, Svoboda M, Zenáhlíková J, Brůna J, Mosandl R, Fischer A. 2017. Life and death of Picea abies after bark-beetle outbreak: ecological processes driving seedling recruitment. Ecol Appl 27:156–67. http://doi.wiley.com/10.1002/eap.1429. Last accessed 22/01/2018.
  40. Majer V, Cosby BJ, Kopáček J, Veselý J, Kopacek J, Vesely J, Kopácek J, Stuchlík E, Veselý J, Kopáček J, Stuchlik E. 2003. Modelling reversibility of Central European mountain lakes from acidification: Part I—the Bohemian forest. Hydrol Earth Syst Sci 7:494–509. http://www.hydrol-earth-syst-sci.net/7/494/2003/. Last accessed 09/01/2018.
  41. Marini L, Økland B, Jönsson AM, Bentz B, Carroll A, Forster B, Grégoire J-C, Hurling R, Nageleisen LM, Netherer S, Ravn HP, Weed A, Schroeder M. 2017. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography (Cop) 40:1426–35. http://doi.wiley.com/10.1111/ecog.02769. Last accessed 05/01/2018.
  42. Matějka K. 2015. Disturbance-induced changes in the plant biomass in forests near Plešné and Čertovo Lakes. J For Sci 61:156–68. http://www.agriculturejournals.cz/web/jfs.htm?volume=61&firstPage=156&type=publishedArticle. Last accessed 22/11/2017.
  43. Mikkelson KM, Bearup LA, Maxwell RM, Stednick JD, McCray JE, Sharp JO. 2013. Bark beetle infestation impacts on nutrient cycling, water quality and interdependent hydrological effects. Biogeochemistry 115:1–21. http://link.springer.com/10.1007/s10533-013-9875-8. Last accessed 21/02/2018.
  44. Müller J, Bußler H, Goßner M, Rettelbach T, Duelli P. 2008. The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodivers Conserv 17:2979–3001. http://link.springer.com/10.1007/s10531-008-9409-1. Last accessed 05/01/2018.
  45. Neumann M, Mues V, Moreno A, Hasenauer H, Seidl R. 2017. Climate variability drives recent tree mortality in Europe. Glob Chang Biol 23:4788–97. http://doi.wiley.com/10.1111/gcb.13724. Last accessed 05/01/2018.
  46. Nováková MH, Edwards-Jonášová M. 2015. Restoration of Central-European mountain Norway spruce forest 15 years after natural and anthropogenic disturbance. For Ecol Manage 344:120–30. http://linkinghub.elsevier.com/retrieve/pii/S0378112715000687. Last accessed 01/06/2018.
  47. Oulehle F, Cosby BJ, Austnes K, Evans CD, Hruška J, Kopáček J, Moldan F, Wright RF. 2015. Modelling inorganic nitrogen in runoff: seasonal dynamics at four European catchments as simulated by the MAGIC model. Sci Total Environ 536:1019–28.CrossRefPubMedGoogle Scholar
  48. Oulehle F, Cosby BJ, Wright RF, Hruska J, Kopacek J, Kram P, Evans CD, Moldan F. 2012. Modeling soil nitrogen: the MAGIC model with nitrogen retention linked to carbon turnover using decomposer dynamics. Environ Pollut.Google Scholar
  49. Oulehle F, Chuman T, Majer V, Hruška J. 2013. Chemical recovery of acidified Bohemian lakes between 1984 and 2012: the role of acid deposition and bark beetle induced forest disturbance. Biogeochemistry 116:83–101. http://link.springer.com/10.1007/s10533-013-9865-x. Last accessed 09/01/2018.
  50. Oulehle F, Kopáček J, Chuman T, Černohous V, Hůnová I, Hruška J, Krám P, Lachmanová Z, Navrátil T, Štěpánek P, Tesař M, Evans CD. 2016. Predicting sulphur and nitrogen deposition using a simple statistical method. Atmos Environ 140:456–68.CrossRefGoogle Scholar
  51. Palviainen M, Finér L, Laiho R, Shorohova E, Kapitsa E, Vanha-Majamaa I. 2010. Phosphorus and base cation accumulation and release patterns in decomposing Scots pine, Norway spruce and silver birch stumps. For Ecol Manage 260:1478–89. http://linkinghub.elsevier.com/retrieve/pii/S0378112710004408. Last accessed 22/01/2018.
  52. Pec GJ, Karst J, Sywenky AN, Cigan PW, Erbilgin N, Simard SW, Cahill JF. 2015. Rapid Increases in Forest Understory Diversity and Productivity following a Mountain Pine Beetle (Dendroctonus ponderosae) Outbreak in Pine Forests. Wang X, editor. PLoS ONE 10:e0124691. http://dx.plos.org/10.1371/journal.pone.0124691. Last accessed 05/01/2018.
  53. Přívětivý T, Janík D, Unar P, Adam D, Král K, Vrška T. 2016. How do environmental conditions affect the deadwood decomposition of European beech (Fagus sylvatica L.)? For Ecol Manage 381:177–87. http://linkinghub.elsevier.com/retrieve/pii/S0378112716306302. Last accessed 22/01/2018.
  54. Rhoades CC, McCutchan JH, Cooper LA, Clow D, Detmer TM, Briggs JS, Stednick JD, Veblen TT, Ertz RM, Likens GE, Lewis WM. 2013. Biogeochemistry of beetle-killed forests: Explaining a weak nitrate response. Proc Natl Acad Sci 110:1756–60. http://www.pnas.org/cgi/doi/10.1073/pnas.1221029110. Last accessed 05/01/2018.
  55. Russell MB, Fraver S, Aakala T, Gove JH, Woodall CW, D’Amato AW, Ducey MJ. 2015. Quantifying carbon stores and decomposition in dead wood: a review. For Ecol Manage 350:107–28. https://www.sciencedirect.com/science/article/pii/S0378112715002558. Last accessed 22/01/2018.
  56. Seidl R, Rammer W. 2017. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landsc Ecol 32:1485–98. http://link.springer.com/10.1007/s10980-016-0396-4. Last accessed 05/01/2018.
  57. Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer CPO. 2017. Forest disturbances under climate change. Nat Clim Chang 7:395–402. http://www.nature.com/doifinder/10.1038/nclimate3303. Last accessed 05/01/2018.
  58. Svoboda M, Fraver S, Janda P, Bače R, Zenáhlíková J. 2010. Natural development and regeneration of a Central European montane spruce forest. For Ecol Manage 260:707–14. http://linkinghub.elsevier.com/retrieve/pii/S0378112710002963. Last accessed 26/10/2012.
  59. Svoboda M, Janda P, Nagel TA, Fraver S, Rejzek J, Bače R. 2012. Disturbance history of an old-growth sub-alpine Picea abies stand in the Bohemian Forest, Czech Republic. Cherubini P, editor. J Veg Sci 23:86–97. http://doi.wiley.com/10.1111/j.1654-1103.2011.01329.x. Last accessed 04/11/2012.
  60. Svoboda M, Matějka K, Kopáček J. 2006a. Biomass and element pools of understory vegetation in the catchments of Čertovo Lake and Plešné Lake in the Bohemian Forest. Biologia (Bratisl) 61:S509–21. http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=8&SID=U1mf@@OiiNLnfDpgiGj&page=1&doc=10. Last accessed 20/11/2012.
  61. Svoboda M, Matějka K, Kopáček J, Žaloudík J. 2006b. Estimation of tree biomass of Norway spruce forest in the Plesne Lake catchment, the Bohemian Forest. Biologia (Bratisl) 61:S523–32.Google Scholar
  62. Šamonil P, Antolík L, Svoboda M, Adam D. 2009. Dynamics of windthrow events in a natural fir-beech forest in the Carpathian mountains. For Ecol Manage 257:1148–56. https://www.sciencedirect.com/science/article/pii/S0378112708008724. Last accessed 22/01/2018.
  63. Veselý J, Hruška J, Norton SA, Johnson CE, Vesely J, Hruska J. 1998. Trends in the chemistry of acidified Bohemian lakes from 1984 to 1995: I.Major solutes. Water Air Soil Pollut 108:107–27.CrossRefGoogle Scholar
  64. Vrba J, Bojková J, Chvojka P, Fott J, Kopáček J, Macek M, Nedbalová L, Papáček M, Rádková V, Sacherová V, Soldán T, Šorf M. 2016. Constraints on the biological recovery of the Bohemian Forest lakes from acid stress. Freshw Biol 61:376–95. http://www.scopus.com/inward/record.url?eid=2-s2.0-84959496758&partnerID=tZOtx3y1. Last accessed 11/04/2016.
  65. Vrba J, Kopáček J, Fott J, Kohout L, Nedbalová L, Pražáková M, Soldán T, Schaumburg J. 2003. Long-term studies (1871-2000) on acidification and recovery of lakes in the Bohemian Forest (central Europe). Sci Total Environ 310:73–85.CrossRefPubMedGoogle Scholar
  66. Wirth C, Schumacher J, Schulze E-D. 2004. Generic biomass functions for Norway spruce in Central Europe—a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiol 24:121–39. http://www.ncbi.nlm.nih.gov/pubmed/14676030. Last accessed 27/07/2016.
  67. Wong CM, Daniels LD. 2017. Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles. Glob Chang Biol 23:1926–41. http://doi.wiley.com/10.1111/gcb.13554. Last accessed 05/01/2018.
  68. Wright RF, Cosby BJ, Flaten MB, Reuss JO. 1990. Evaluation of an acidification model with data from manipulated catchments in Norway. Nature 343:53–5.CrossRefGoogle Scholar
  69. Zielonka T. 2006. Quantity and decay stages of coarse woody debris in old-growth subalpine spruce forests of the western Carpathians, Poland. Can J For Res 36:2614–22. http://www.nrcresearchpress.com/doi/10.1139/x06-149. Last accessed 22/01/2018.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Filip Oulehle
    • 1
    • 2
  • Richard F. Wright
    • 3
  • Miroslav Svoboda
    • 4
  • Radek Bače
    • 4
  • Karel Matějka
    • 5
  • Jiří Kaňa
    • 6
  • Jakub Hruška
    • 1
    • 2
  • Raoul-Marie Couture
    • 3
    • 7
  • Jiří Kopáček
    • 6
  1. 1.Global Change Research Institute CASBrnoCzech Republic
  2. 2.Czech Geological SurveyPragueCzech Republic
  3. 3.Norwegian Institute for Water ResearchOsloNorway
  4. 4.Faculty of Forestry and Wood SciencesCzech University of Life SciencesPragueCzech Republic
  5. 5.IDSPragueCzech Republic
  6. 6.Biology Centre CASCeske BudejoviceCzech Republic
  7. 7.Département de chimieUniversité LavalQuébecCanada

Personalised recommendations