Advertisement

Ecosystems

, Volume 22, Issue 1, pp 137–151 | Cite as

Environmental Context Mediates Biodiversity–Ecosystem Functioning Relationships in Coastal Soft-sediment Habitats

  • Johanna GammalEmail author
  • Marie Järnström
  • Guillaume Bernard
  • Joanna Norkko
  • Alf Norkko
Article
  • 307 Downloads

Abstract

The ongoing loss of biodiversity and global environmental changes severely affect the structure of coastal ecosystems. Consequences, in terms of ecosystem functioning, are, however, difficult to predict because the context dependency of the biodiversity–ecosystem function relationships within these heterogeneous seascapes is poorly understood. To assess the effects of biological and environmental factors in mediating ecosystem functioning (nutrient cycling) in different natural habitats, intact sediment cores were collected at 18 sites on a grain size gradient from coarse sand to silt, with varying organic matter content and vegetation. To assess ecosystem functioning, solute fluxes (O2, NH4+, PO43−, Si) across the sediment–water interface were measured. The macrofaunal communities changed along the grain size gradient with higher abundance, biomass and number of species in coarser sediments and in habitats with more vegetation. Across the whole gradient, the macrofauna cumulatively accounted for 25% of the variability in the multivariate solute fluxes, whereas environmental variables cumulatively accounted for 20%. Only the biomass and abundance of a few of the most dominant macrofauna species, not the number of species, appeared to contribute significantly to the nutrient recycling processes. Closer analyses of different sediment types (grouped into coarse, medium and fine sediment) showed that the macrofauna was an important predictor in all sediment types, but had the largest impact in fine and medium sediments. The results imply that even if the ecosystem functioning is similar in different sediment types, the underpinning mechanisms are different, which makes it challenging to generalize patterns of functioning across the heterogeneous shallow coastal zones.

Keywords

biodiversity–ecosystem functioning benthic macrofauna sediment grain size solute fluxes environmental gradient spatial heterogeneity coastal zone Baltic Sea 

Notes

Acknowledgements

This study was funded by Walter and Andrée de Nottbeck Foundation (JG, GB) and the BONUS COCOA project, which was supported by BONUS (Art 185), funded jointly by the EU and the Academy of Finland (AN), and the University of Helsinki (3-year grant to JN). We sincerely thank Judi Hewitt for valuable advice on statistical analyses, Emmi Hänninen for video analyses, and Hanna Halonen and trainees at Tvärminne Zoological Station for valuable practical assistance.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10021_2018_258_MOESM1_ESM.pdf (241 kb)
Supplementary material 1 (PDF 240 kb)

References

  1. Aller RC. 2014. Sedimentary diagenesis, depositional environments, and benthic fluxes. In: Holland HD, Turekian KK, Eds. Treatise on geochemistry, Vol. 8. 2nd edn. Oxford: Elsevier. p 293–334.CrossRefGoogle Scholar
  2. Aller RC, Aller JY. 1998. The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments. J Mar Res 56:905–36.CrossRefGoogle Scholar
  3. Anderson MJ, Gorley RN, Clarke KR. 2008. PERMANOVA + for PRIMER. Guide to software and statistical methods, 214 pp.Google Scholar
  4. Attard KM, Stahl H, Kamenos NA, Turner G, Burdett HL, Glud RN. 2015. Benthic oxygen exchange in a live coralline algal bed and an adjacent sandy habitat: an eddy covariance study. Mar Ecol Prog Ser 535:99–115.CrossRefGoogle Scholar
  5. Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR. 2011. The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–93.CrossRefGoogle Scholar
  6. Berkenbusch K, Rowden AA, Myers TE. 2007. Interactions between seagrasses and burrowing ghost shrimps and their influence on infaunal assemblages. J Exp Mar Biol Ecol 341:70–84.CrossRefGoogle Scholar
  7. Bernard G, Delgard ML, Maire O, Ciutat A, Lecroart P, Deflandre B, Duchêne JC, Grémare A. 2014. Comparative study of sediment particle mixing in a Zostera noltei meadow and a bare sediment mudflat. Mar Ecol Prog Ser 514:71–86.CrossRefGoogle Scholar
  8. Bertics VJ, Ziebis W. 2010. Bioturbation and the role of microniches for sulfate reduction in coastal marine sediments. Environ Microbiol 12:3022–34.CrossRefGoogle Scholar
  9. Boström C, Bonsdorff E. 1997. Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) beds in the northern Baltic Sea. J Sea Res 37:153–66.CrossRefGoogle Scholar
  10. Bourgeois S, Archambault P, Witte U. 2017. Organic matter remineralization in marine sediments: a pan-arctic synthesis. Global Biogeochem Cycles 31:190–213.CrossRefGoogle Scholar
  11. Braeckman U, Foshtomi MY, Gansbeke D, Meysman F, Soetaert K, Vincx M, Vanaverbeke J. 2014. Variable importance of macrofaunal functional biodiversity for biogeochemical cycling in temperate coastal sediments. Ecosystems 17:720–37.Google Scholar
  12. Bulling MT, Solan M, Dyson KE, Hernandez-Milian G, Luque P, Pierce GJ, Raffaelli D, Paterson DM, White PCL. 2008. Species effects on ecosystem processes are modified by faunal responses to habitat composition. Oecologia 158:511–20.CrossRefGoogle Scholar
  13. Caffrey JM, Kemp WM. 1991. Seasonal and spatial patterns of oxygen production, respiration and root-rhizome release in Potamogeton perfoliatus L. and Zostera marina L. Aquat Bot 40:109–28.CrossRefGoogle Scholar
  14. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S. 2012. Biodiversity loss and its impact on humanity. Nature 486:59–67.CrossRefGoogle Scholar
  15. Castel J, Labourg P-J, Escaravage V, Auby I, Garcia ME. 1989. Influence of seagrass beds and oyster parks on the abundance and biomass patterns of meio- and macrobenthos in tidal flats. Estuar Coast Shelf Sci 28:71–85.CrossRefGoogle Scholar
  16. Chapin FSIII, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, Sala OE, Tilman D. 1997. Biotic control over the functioning of ecosystems. Science 277:500–4.CrossRefGoogle Scholar
  17. Christensen B, Vedel A, Kristensen E. 2000. Carbon and nitrogen fluxes in sediment inhabited by suspension-feeding (Nereis diversicolor) and non-suspension-feeding (N-virens) polychaetes. Mar Ecol Prog Ser 192:203–17.CrossRefGoogle Scholar
  18. Clarke KR, Gorley RN, Somerfield PJ, Warwick RM. 2014. Change in marine communities: an approach to statistical analysis and interpretation. 3rd edn. PRIMER-E: Plymouth.Google Scholar
  19. Clarke KR, Gorley RN. 2015. PRIMER v7: user manual/tutorial. Plymouth: PRIMER-E.Google Scholar
  20. Emmerson MC, Solan M, Emes C, Paterson DM, Raffaelli D. 2001. Consistent patterns and the idiosyncratic effects of biodiversity in marine ecosystems. Nature 411:73–7.CrossRefGoogle Scholar
  21. Fonseca MS, Fisher JS. 1986. A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration. Mar Ecol Prog Ser 29:15–22.CrossRefGoogle Scholar
  22. Fredriksen S, De Backer A, Boström C, Christie H. 2010. Infauna fromZostera marina L. meadows in Norway. Differences in vegetated and unvegetated areas. Mar Biol Res 6:189–200.CrossRefGoogle Scholar
  23. Gamfeldt L, Lefcheck JS, Byrnes JEK, Cardinale BJ, Duffy JE, Griffin JN. 2015. Marine biodiversity and ecosystem functioning: what’s known and what’s next? Oikos 124:252–65.CrossRefGoogle Scholar
  24. Gammal J, Norkko J, Pilditch CA, Norkko A. 2017. Coastal hypoxia and the importance of benthic macrofauna communities for ecosystem functioning. Estuaries Coasts 40:457–68.CrossRefGoogle Scholar
  25. Gibbs M, Funnell G, Pickmere S, Norkko A, Hewitt J. 2005. Benthic nutrient fluxes along an estuarine gradient: influence of the pinnid bivalve Atrina zelandica in summer. Mar Ecol Prog Ser 288:151–64.CrossRefGoogle Scholar
  26. Glud RN. 2008. Oxygen dynamics of marine sediments. Mar Biol Res 4:243–89.CrossRefGoogle Scholar
  27. Godbold JA. 2008. Marine benthic biodiversity–ecosystem function relations in complex systems. PhD thesis, University of Aberdeen, Scotland. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493491.
  28. Gustafsson C, Norkko A. 2016. Not all plants are the same: exploring metabolism and nitrogen fluxes in a benthic community composed of different aquatic plant species. Limnol Oceanogr 61:1787–99.CrossRefGoogle Scholar
  29. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R. 2008. A global map of human impact on marine ecosystems. Science 319:948–52.CrossRefGoogle Scholar
  30. Hedman JE, Gunnarsson JS, Samuelsson G, Gilbert F. 2011. Particle reworking and solute transport by the sediment-living polychaetes Marenzelleria neglecta and Hediste diversicolor. J Exp Mar Biol Ecol 407:294–301.CrossRefGoogle Scholar
  31. Hewitt JE, Thrush Simon F, Dayton Paul K, Bonsdorff Erik. 2007. The effect of spatial and temporal heterogeneity on the design and analysis of empirical studies of scale-dependent systems. Am Nat 169:398–408.Google Scholar
  32. Hiddink JG, Davies TW, Perkins M, Machairopoulou M, Neill SP. 2009. Context dependency of relationships between biodiversity and ecosystem functioning is different for multiple ecosystem functions. Oikos 118:1892–900.CrossRefGoogle Scholar
  33. Huettel M, Berg P, Kostka JE. 2014. Benthic exchange and biogeochemical cycling in permeable sediments. Ann Rev Mar Sci 6:23–51.CrossRefGoogle Scholar
  34. Janssen F, Huettel M, Witte U. 2005. Pore-water advection and solute fluxes in permeable marine sediments (II): benthic respiration at three sandy sites with different permeabilities (German Bight, North Sea). Limnol Oceanogr 50:779–92.CrossRefGoogle Scholar
  35. Kauppi L, Norkko J, Ikonen J, Norkko A. 2017. Seasonal variability in ecosystem functions: quantifying the contribution of invasive species to nutrient cycling in coastal ecosystems. Mar Ecol Prog Ser 572:193–207.CrossRefGoogle Scholar
  36. Koroleff F. 1976. Total and organic nitrogen. In: Grasshoff K, Ed. Methods of seawater analysis. New York: Verlag Chemie.Google Scholar
  37. Kristensen E, Kostka JE. 2005. Macrofaunal burrows and irrigation in marine sediment: microbiological and biogeochemical interactions. In: Kristensen E, Haese RR, Kostka JE, Eds. Interactions between macro- and microorganisms in marine sediments. Washington: American Geophysical Union.CrossRefGoogle Scholar
  38. Kristensen E, Penha-Lopes G, Delefosse M, Valdemarsen T, Quintana CO, Banta GT. 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar Ecol Prog Ser 446:285–302.CrossRefGoogle Scholar
  39. Larsen TH, Williams NM, Kremen C. 2005. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol Lett 8:538–47.CrossRefGoogle Scholar
  40. Levin LA, Boesch DF, Covich A, Dahm C, Erséus C, Ewel KC, Kneib RT, Moldenke A, Palmer MA, Snelgrove P, Strayer D, Weslawski JM. 2001. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4:430–51.CrossRefGoogle Scholar
  41. Link H, Chaillou G, Forest A, Piepenburg D, Archambault P. 2013. Multivariate benthic ecosystem functioning in the Arctic—benthic fluxes explained by environmental parameters in the southeastern Beaufort Sea. Biogeosciences 10:5911–29.CrossRefGoogle Scholar
  42. Lohrer AM, Thrush SF, Hewitt JE, Berkenbusch K, Ahrens M, Cummings VJ. 2004. Terrestrially derived sediment: response of marine macrobenthic communities to thin terrigenous deposits. Mar Ecol Prog Ser 273:121–38.CrossRefGoogle Scholar
  43. Lohrer AM, Thrush SF, Hewitt JE, Kraan C. 2015. The up-scaling of ecosystem functions in a heterogeneous world. Sci Rep 5:10349.CrossRefGoogle Scholar
  44. McGinnis DF, Sommer S, Lorke A, Glud RN, Linke P. 2014. Quantifying tidally driven benthic oxygen exchange across permeable sediments: an aquatic eddy correlation study. J Geophys Res Oceans 119:6918–32.CrossRefGoogle Scholar
  45. Meadows PS, Meadows A, Murray JMH. 2012. Biological modifiers of marine benthic seascapes: their role as ecosystem engineers. Geomorphology 157:31–48.CrossRefGoogle Scholar
  46. Mermillod-Blondin F, Rosenberg R. 2006. Ecosystem engineering: the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquat Sci 68:434–42.CrossRefGoogle Scholar
  47. Mogg AOM, Attard KM, Stahl H, Brand T, Turnewitsch R, Sayer MDJ. 2017. The influence of coring method on the preservation of sedimentary and biogeochemical features when sampling soft-bottom, shallow coastal environments. Limnol Oceanogr Methods.  https://doi.org/10.1002/lom3.10211.Google Scholar
  48. Moodley L, Middelburg JJ, Soetaert K, Boschker HTS, Herman PMJ, Heip CHR. 2005. Similar rapid response to phytodetritus deposition in shallow and deep-sea sediments. J Mar Res 63:457–69.CrossRefGoogle Scholar
  49. Naeem S. 2008. Advancing realism in biodiversity research. Trends Ecol Evol 23:414–16.CrossRefGoogle Scholar
  50. Needham HR, Pilditch CA, Lohrer AM, Thrush SF. 2011. Context-specific bioturbation mediates changes to ecosystem functioning. Ecosystems 14:1096–109.CrossRefGoogle Scholar
  51. Norkko A, Villnäs A, Norkko J, Valanko S, Pilditch C. 2013. Size matters: implications of the loss of large individuals for ecosystem function. Sci Rep 3:2646.CrossRefGoogle Scholar
  52. Norkko J, Gammal J, Hewitt J, Josefson A, Carstensen J, Norkko A. 2015. Seafloor ecosystem function relationships. in situ patterns of change across gradients of increasing hypoxic stress. Ecosystems 18:1424–39.CrossRefGoogle Scholar
  53. Pearson TH, Rosenberg R. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol Ann Rev 16:229–311.Google Scholar
  54. Poage MA, Barrett JE, Virginia RA, Wall DH. 2008. The influence of soil geochemistry on nematode distribution, McMurdo dry valleys, Antarctica. Arct Antarct Alp Res 40:119–28.CrossRefGoogle Scholar
  55. Pratt DR, Lohrer AM, Pilditch CA, Thrush SF. 2014. Changes in ecosystem function across sedimentary gradients in estuaries. Ecosystems 17:182–94.CrossRefGoogle Scholar
  56. Reise K. 2002. Sediment mediated species interactions in coastal waters. J Sea Res 48:127–41.CrossRefGoogle Scholar
  57. Reiss J, Bridle JR, Montoya JM, Woodward G. 2009. Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol Evol 24:505–14.CrossRefGoogle Scholar
  58. Riisgård HU, Kamermans P. 2001. Switching between deposit and suspension feeding in coastal zoobenthos. In: Reise K, Ed. Ecological comparisons of sedimentary shores. Berlin: Springer. p 73–101.CrossRefGoogle Scholar
  59. Sereda JM, Hudson JJ. 2011. Empirical models for predicting the excretion of nutrients (N and P) by aquatic metazoans: taxonomic differences in rates and element ratios. Freshw Biol 56:250–63.CrossRefGoogle Scholar
  60. Snelgrove PVR, Thrush SF, Wall DH, Norkko A. 2014. Real world biodiversity–ecosystem functioning: a seafloor perspective. Trends Ecol Evol 29:398–405.CrossRefGoogle Scholar
  61. Solan M, Cardinale BJ, Downing AL, Engelhardt KAM, Ruesink JL, Srivastava DS. 2004. Extinction and ecosystem function in the marine benthos. Science 306:1177–80.CrossRefGoogle Scholar
  62. Solan M, Godbold JA, Symstad A, Flynn DFB, Bunker D. 2009. Biodiversity–ecosystem function research and biodiversity futures: early bird catches the worm or a day late and a dollar short? In: Naeem S, Bunker DE, Hector A, Loreau M, Perrings C, Eds. Biodiversity and human impacts: ecological and societal implications. Oxford: Oxford University Press.Google Scholar
  63. Stachowicz JJ, Bruno JF, Duffy JE. 2007. Understanding the effects of marine biodiversity on communities and ecosystems. Annu Rev Ecol Evol Syst 38:739–66.CrossRefGoogle Scholar
  64. Sylvain ZA, Wall DH, Cherwin KL, Peters DPC, Reichmann LG, Sala OE. 2014. Soil animal responses to moisture availability are largely scale, not ecosystem dependent: insight from a cross-site study. Glob Change Biol 20:2631–43.CrossRefGoogle Scholar
  65. Thrush SF, Hewitt JE, Gibbs M, Lundquist C, Norkko A. 2006. Functional role of large organisms in intertidal communities: community effects and ecosystem function. Ecosystems 9:1029–40.CrossRefGoogle Scholar
  66. Thrush SF, Hewitt JE, Kraan C, Lohrer AM, Pilditch CA, Douglas E. 2017. Changes in the location of biodiversity–ecosystem function hot spots across the seafloor landscape with increasing sediment nutrient loading. Proc R Soc B Biol Sci 284:20162861.CrossRefGoogle Scholar
  67. Thrush SF, Hewitt JE, Norkko A, Nicholls PE, Funnell GA, Ellis JI. 2003. Habitat change in estuaries: predicting broad-scale responses of intertidal macrofauna to sediment mud content. Mar Ecol Prog Ser 263:101–12.CrossRefGoogle Scholar
  68. Urban-Malinga B, Drgas A, Gromisz S, Barnes N. 2014. Species-specific effect of macrobenthic assemblages on meiobenthos and nematode community structure in shallow sandy sediments. Mar Biol 161:195–212.CrossRefGoogle Scholar
  69. Vanni MJ, McIntyre PB. 2016. Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: a global synthesis. Ecology 97:3460–71.CrossRefGoogle Scholar
  70. Villnäs A, Hewitt J, Snickars M, Westerbom M, Norkko A. 2017. Template for using biological trait groupings when exploring large-scale variation in seafloor multifunctionality. Ecol Appl.  https://doi.org/10.1002/eap.1630.Google Scholar
  71. Villnäs A, Norkko J, Hietanen S, Josefson AB, Lukkari K, Norkko A. 2013. The role of recurrent disturbances for ecosystem multifunctionality. Ecology 94:2275–87.CrossRefGoogle Scholar
  72. Virginia RA, Wall DH. 1999. How soils structure communities in the antarctic dry valleys. Bioscience 49:973–83.CrossRefGoogle Scholar
  73. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM. 1997. Human domination of Earth’s ecosystems. Science 277:494–9.CrossRefGoogle Scholar
  74. Wall DH, Bradford MA, St. John MG, Trofymow JA, Behan-Pelletier V, Bignell DE, Dangerfield JM, Parton WJ, Rusek J, Voigt W, Wolters V, Gardel HZ, Ayuke FO, Bashford R, Beljakova OI, Bohlen PJ, Brauman A, Flemming S, Henschel JR, Johnson DL, Jones TH, Kovarova M, Kranabetter JM, Kutny LES, Lin K-C, Maryati M, Masse D, Pokarzhevskii A, Rahman H, SabarÁ MG, Salamon J-A, Swift MJ, Varela A, Vasconcelos HL, White DON, Zou X. 2008. Global decomposition experiment shows soil animal impacts on ddujecomposition are climate-dependent. Glob Change Biol 14:2661–77.Google Scholar
  75. Wentworth CK. 1922. A scale of grade and class terms for clastic sediments. J Geol 30:377–92.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Johanna Gammal
    • 1
    Email author
  • Marie Järnström
    • 2
  • Guillaume Bernard
    • 1
    • 3
  • Joanna Norkko
    • 1
  • Alf Norkko
    • 1
    • 4
  1. 1.Tvärminne Zoological StationUniversity of HelsinkiHangöFinland
  2. 2.Environmental and Marine BiologyÅbo Akademi UniversityÅboFinland
  3. 3.UMR5805, EPOCCNRSTalenceFrance
  4. 4.Baltic Sea CentreStockholm UniversityStockholmSweden

Personalised recommendations