Advertisement

Ecosystems

, Volume 22, Issue 1, pp 91–109 | Cite as

Watershed Buffering of Legacy Phosphorus Pressure at a Regional Scale: A Comparison Across Space and Time

  • A. S. KusmerEmail author
  • J.-O. Goyette
  • G. K. MacDonald
  • E. M. Bennett
  • R. Maranger
  • P. J. A. Withers
Article

Abstract

Phosphorus (P) plays a crucial role in both agricultural production and water quality. There has been growing recognition of the importance of “legacy” P (surplus P that has accumulated in watersheds over time) for understanding contemporary water quality outcomes; however, little is known about how different watersheds respond to cumulative pressures from surplus P. The “buffering capacity” concept describes the ability of watersheds to attenuate P loading to surface waters by retaining P inputs over time. To explore the role of various watershed characteristics in buffering capacity, we used historic P data to calculate indices describing long- and short-term buffering for 16 large watersheds in southern Quebec, Canada, across a 30-year time span (1981–2011). We examined the correlation between these buffering capacity indicators and a set of key geochemical, hydrological, landscape and socio-ecological variables that we hypothesized could influence P buffering dynamics. Both short- and long-term buffering metrics were most strongly correlated with hydrological characteristics. Riverine TP flux across the watersheds was most strongly correlated with long-term buffering, which could represent a dominant influence of legacy P on contemporary riverine P flux. However, short- and long-term watershed buffering indices were not correlated with each other, suggesting distinctly different timescales and mechanisms of buffering. Combining estimates of long-term P accumulation along with biophysical characteristics of the watershed (including hydrology) explained a much greater share of the variation in riverine TP flux (R2 = 0.69) than biophysical characteristics alone (R2 = 0.36). Our findings reinforce the need to consider P buffering capacity and legacy P accumulation to help guide decision making around regional water quality targets across human-dominated landscapes.

Keywords

phosphorus watershed agriculture historic legacy land use hydrology soil P nutrient budgets 

Notes

Acknowledgements

We thank Helen Jarvie and Donnacha Doody for comments on previous drafts. We thank Guillaume Larocque at the Québec Centre for Biodiversity Science for technical assistance and support. This research was funded by the Natural Science and Engineering Research Council (NSERC) Discovery Grants (DG) to Elena Bennett and the Economics for the Anthropocene (E4A) program. We thank two anonymous reviewers for their invaluable feedback.

Supplementary material

10021_2018_255_MOESM1_ESM.docx (82 kb)
Supplementary material 1 (DOCX 81 kb)

References

  1. Alexander RB, Smith RA, Schwarz GE, Boyer EW, Nolan JV, Brakebill JW. 2007. Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin. Environ Sci Technol 42:822–30.CrossRefGoogle Scholar
  2. Allan JD. 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Ann Rev Ecol Evol Systemat 35:257–84.CrossRefGoogle Scholar
  3. Barry C, Foy R. 2016. Assessing the success of regional measures for lowering agricultural nutrient pollution in headwater streams. J Environ Qual 45:1329–43.CrossRefGoogle Scholar
  4. Beaudet P, Grenier M, Giroux M, Girard V. 2003. Description statistique des propriétés chimiques des sols minéraux du Québec: Basée sur les analyses de sols effectuées de 1995 a 2001. Ministere de l’Agriculture, des Pêcheries et de l’Alimentation du Québec and Institut de recherche et de développement en agroenvironnement Inc.Google Scholar
  5. Bennett EM, Carpenter SR, Caraco NF. 2001. Human impact on erodable phosphorus and eutrophication: a global perspective increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication. Bioscience 51:227–34.CrossRefGoogle Scholar
  6. Borbor-Cordova MJ, Boyer EW, McDowell WH, Hall CA. 2006. Nitrogen and phosphorus budgets for a tropical watershed impacted by agricultural land use: Guayas, Ecuador. Biogeochemistry 79:135–61.CrossRefGoogle Scholar
  7. Boutin D. 2005. Reconciling farm support and environmental protection: trends and prospects. In: 6th biennial conference of the Canadian society for ecological economics.Google Scholar
  8. Carpenter SR. 2005. Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci USA 102:10002–5.CrossRefGoogle Scholar
  9. Childers DL, Corman J, Edwards M, Elser JJ. 2011. Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. Bioscience 61:117–24.CrossRefGoogle Scholar
  10. Dobermann A, Cassman K. 2002. Plant nutrient management for enhanced productivity in intensive grain production systems of the United States and Asia. Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium: Springer, p 153–175.Google Scholar
  11. Doody DG, Withers PJ, Dils RM, McDowell RW, Smith V, McElarney YR, Dunbar M, Daly D. 2016. Optimizing land use for the delivery of catchment ecosystem services. Front Ecol Environ 14:325–32.CrossRefGoogle Scholar
  12. Environment CCot, Development S. 2001. Report of the Commissioner of the Environment and Sustainable Development to the House of Commons: The Commissioner.Google Scholar
  13. ESRI. 2012. ArcGIS 10.1. Redlands, CA: Environmental Systems Research Institute.Google Scholar
  14. Fraterrigo JM, Downing JA. 2008. The influence of land use on lake nutrients varies with watershed transport capacity. Ecosystems 11:1021–34.CrossRefGoogle Scholar
  15. Gentry L, David M, Royer T, Mitchell C, Starks K. 2007. Phosphorus transport pathways to streams in tile-drained agricultural watersheds. J Environ Qual 36:408–15.CrossRefGoogle Scholar
  16. Gordon LJ, Peterson GD, Bennett EM. 2008. Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol Evol 23:211–19.CrossRefGoogle Scholar
  17. Goyette JO, Bennett EM, Howarth RW, Maranger R. 2016. Changes in anthropogenic nitrogen and phosphorus inputs to the St. Lawrence sub-basin over 110 years and impacts on riverine export. Global Biogeochem Cycles 30:1000–14.CrossRefGoogle Scholar
  18. Hong B, Swaney DP, Mörth C-M, Smedberg E, Hägg HE, Humborg C, Howarth RW, Bouraoui F. 2012. Evaluating regional variation of net anthropogenic nitrogen and phosphorus inputs (NANI/NAPI), major drivers, nutrient retention pattern and management implications in the multinational areas of Baltic Sea basin. Ecol Model 227:117–35.CrossRefGoogle Scholar
  19. Jarvie HP, Sharpley AN, Spears B, Buda AR, May L, Kleinman PJ. 2013. Water quality remediation faces unprecedented challenges from “legacy phosphorus”. Environ Sci Technol 47:8997–8.CrossRefGoogle Scholar
  20. Jutras P. 1967. Extent of agricultural drainage needs in Quebec. Can Agric Eng 9:117–25.Google Scholar
  21. King KW, Williams MR, Johnson LT, Smith DR, LaBarge GA, Fausey NR. 2017. Phosphorus availability in western lake erie basin drainage waters: legacy evidence across spatial scales. J Environ Qual 46:466–9.CrossRefGoogle Scholar
  22. Kleinman P, Sharpley A, Buda A, McDowell R, Allen A. 2011. Soil controls of phosphorus in runoff: management barriers and opportunities. Can J Soil Sci 91:329–38.CrossRefGoogle Scholar
  23. Lee CJ, Hirsch RM, Schwarz GE, Holtschlag DJ, Preston SD, Crawford CG, Vecchia AV. 2016. An evaluation of methods for estimating decadal stream loads. J Hydrol 542:185–203.CrossRefGoogle Scholar
  24. Lehner B, Grill G. 2013. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol Process 27:2171–86.CrossRefGoogle Scholar
  25. Lim KJ, Engel BA, Tang Z, Choi J, Kim KS, Muthukrishnan S, Tripathy D. 2005. Automated web gis based hydrograph analysis tool, WHAT1. Wiley Online Library.Google Scholar
  26. MacDonald GK, Bennett EM. 2009. Phosphorus accumulation in Saint Lawrence River watershed soils: a century-long perspective. Ecosystems 12:621–35.CrossRefGoogle Scholar
  27. Mailhot A, Rousseau A, Salvano E, Turcotte R, Villeneuve J. 2002. Évaluation de l’impact de l’assainissement urbain sur la qualité des eaux du bassin versant de la rivière Chaudière à l’aide du système de modélisation intégrée GIBSI. Revue des sciences de l’eau/J Water Sci 15:149–72.Google Scholar
  28. McDowell R, Monaghan R, Morton J. 2003. Soil phosphorus concentrations to minimise potential P loss to surface waters in Southland. N Z J Agric Res 46:239–53.CrossRefGoogle Scholar
  29. McGarigal K, Cushman SA, Ene E. 2012. FRAGSTATS 4.0: Spatial pattern analysis program for categorical and continuous maps. Amherst, Massachusetts, USA: University of Massachusetts.Google Scholar
  30. Meals DW, Dressing SA, Davenport TE. 2010. Lag time in water quality response to best management practices: a review. J Environ Qual 39:85–96.CrossRefGoogle Scholar
  31. Metson GS, Lin J, Harrison JA, Compton JE. 2017. Linking terrestrial phosphorus inputs to riverine export across the United States. Water Res 124:177–91.CrossRefGoogle Scholar
  32. Montpetit É, Coleman WD. 1999. Policy communities and policy divergence in Canada: agro-environmental policy development in Quebec and Ontario. Can J Polit Sci 32:691–714.CrossRefGoogle Scholar
  33. Motew M, Chen X, Booth EG, Carpenter SR, Pinkas P, Zipper SC, Loheide SP, Donner SD, Tsuruta K, Vadas PA. 2017. The influence of legacy P on lake water quality in a Midwestern agricultural watershed. Ecosystems: 1–15.Google Scholar
  34. Osborne LL, Kovacic DA. 1993. Riparian vegetated buffer strips in water-quality restoration and stream management. Freshw Biol 29:243–58.CrossRefGoogle Scholar
  35. Painchaud J. 1997. La qualité de l’eau des rivières du Québec: état et tendances: Ministère de l’environnement et de la faune.Google Scholar
  36. Preston SD, Alexander RB, Schwarz GE, Crawford CG. 2011. Factors affecting stream nutrient loads: a synthesis of regional SPARROW model results for the continental United States. JAWRA J Am Water Resour Assoc 47:891–915.CrossRefGoogle Scholar
  37. Qiu J, Turner MG. 2015. Importance of landscape heterogeneity in sustaining hydrologic ecosystem services in an agricultural watershed. Ecosphere 6:1–19.CrossRefGoogle Scholar
  38. R Core Team. 2016. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  39. Raudsepp-Hearne C, Peterson GD, Bennett E. 2010. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc Natl Acad Sci 107:5242–7.CrossRefGoogle Scholar
  40. Reed T, Carpenter SR. 2002. Comparisons of P-yield, riparian buffer strips, and land cover in six agricultural watersheds. Ecosystems 5:568–77.CrossRefGoogle Scholar
  41. Rowe H, Withers PJ, Baas P, Chan NI, Doody D, Holiman J, Jacobs B, Li H, MacDonald GK, McDowell R. 2016. Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutr Cycl Agroecosyst 104:393–412.CrossRefGoogle Scholar
  42. Russell MJ, Weller DE, Jordan TE, Sigwart KJ, Sullivan KJ. 2008. Net anthropogenic phosphorus inputs: spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry 88:285–304.CrossRefGoogle Scholar
  43. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. 2001. Catastrophic shifts in ecosystems. Nature 413:591.CrossRefGoogle Scholar
  44. Sharpley A, Jarvie HP, Buda A, May L, Spears B, Kleinman P. 2013. Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment. J Environ Qual 42:1308–26.CrossRefGoogle Scholar
  45. Soil Landscapes of Canada Working Group. 2010. Soil Landscapes of Canada version 3.2. Agriculture and Agri-Food Canada.Google Scholar
  46. van Bochove E, Thériault G, Denault J-T, Dechmi F, Allaire SE, Rousseau AN. 2012. Risk of phosphorus desorption from Canadian agricultural land: 25-year temporal trend. J Environ Qual 41:1402–12.CrossRefGoogle Scholar
  47. Vaz MR, Edwards A, Shand C, Cresser M. 1993. Phosphorus fractions in soil solution: influence of soil acidity and fertiliser additions. Plant Soil 148:175–83.CrossRefGoogle Scholar
  48. Vitousek PM, Naylor R, Crews T, David M, Drinkwater L, Holland E, Johnes P, Katzenberger J, Martinelli L, Matson P. 2009. Nutrient imbalances in agricultural development. Science 324:1519–20.CrossRefGoogle Scholar
  49. Walker W. 1999. Simplified procedures for eutrophication assessment and prediction: user manual. United States Army Corps of Engineers. Instruction Report W-96-2.Google Scholar
  50. Withers PJ, Neal C, Jarvie HP, Doody DG. 2014. Agriculture and eutrophication: where do we go from here? Sustainability 6:5853–75.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. S. Kusmer
    • 1
    Email author
  • J.-O. Goyette
    • 2
  • G. K. MacDonald
    • 3
  • E. M. Bennett
    • 1
    • 4
  • R. Maranger
    • 2
  • P. J. A. Withers
    • 5
  1. 1.Department of Natural Resource SciencesMcGill UniversityMontrealCanada
  2. 2.Département de Sciences BiologiquesUniversité de MontréalMontrealCanada
  3. 3.Department of GeographyMcGill UniversityMontrealCanada
  4. 4.McGill School of EnvironmentMcGill UniversityMontrealCanada
  5. 5.Lancaster Environment CentreLancaster UniversityLancasterUK

Personalised recommendations