, Volume 22, Issue 1, pp 77–90 | Cite as

Climatic Suitability Derived from Species Distribution Models Captures Community Responses to an Extreme Drought Episode

  • María Ángeles Pérez NavarroEmail author
  • Gerard Sapes
  • Enric Batllori
  • Josep Maria Serra-Diaz
  • Miguel Angel Esteve
  • Francisco Lloret


The differential responses of co-occurring species in rich communities to climate change—particularly to drought episodes—have been fairly unexplored. Species distribution models (SDMs) are used to assess changes in species suitability under environmental shifts, but whether they can portray population and community responses is largely undetermined, especially in relation to extreme events. Here we studied a shrubland community in SE Spain because this region constitutes an ecotone between the Mediterranean biome and subtropical arid areas, and it has recently suffered its driest hydrological year on record. We used four different modeling algorithms (Mahalanobis distance, GAM, BRT, and MAXENT) to estimate species’ climatic suitability before (1950–2000) and during the extreme drought. For each SDM, we related species’ climatic suitability with their remaining green canopy as a proxy for species resistance to drought. We consistently found a positive correlation between remaining green canopy and species’ climatic suitability before the event. This relationship supports the hypothesis of a higher vulnerability of populations living closer to their species’ limits of aridity tolerance. Contrastingly, climatic suitability during the drought did not correlate with remaining green canopy, likely because the exceptional episode led to almost zero suitability values. Overall, our approach highlights climatic niche modeling as a robust approach to standardizing and comparing the behavior of different co-occurring species facing strong climatic fluctuations. Although many processes contribute to resistance to climatic extremes, the results confirm the relevance of populations’ position in the species’ climatic niche for explaining sensitivity to climate change.


climatic suitability SDMs extreme climatic events drought resistance niche dieback 



The research underlying this work has been supported by the Spanish Ministry of Education through a doctoral grant (FPU14/03519) and by the Spanish Ministry of Economy and Competitiveness through the BIOCLIM project (CGL2015-67419-R). We thank GBIF and WorldClim for making their data freely available online. We are also grateful to our colleagues at the University of Murcia and several friends who helped during field sampling. Finally, we want to thank the two anonymous reviewers for their helpful comments.

Supplementary material

10021_2018_254_MOESM1_ESM.pdf (2.3 mb)
Supplementary material 1 (PDF 2367 kb)
10021_2018_254_MOESM2_ESM.pdf (18.7 mb)
Supplementary material 2 (PDF 19165 kb)


  1. Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Anderegg LDL, Barron-Gafford GA, Beerling DJ, Breshears DD, Brodribb TJ, Bugmann H, Cobb RC, Collins AD, Dickman LT, Duan H, Ewers BE, Galiano L, Galvez DA, Garcia-Forner N, Gaylord ML, Germino MJ, Gessler A, Hacke UG, Hakamada R, Hector A, Jenkins MW, Kane JM, Kolb TE, Law DJ, Lewis JD, Limousin J-M, Love DM, Macalady AK, Martínez-Vilalta J, Mencuccini M, Mitchell PJ, Muss JD, O’Brien MJ, O’Grady AP, Pangle RE, Pinkard EA, Piper FI, Plaut JA, Pockman WT, Quirk J, Reinhardt K, Ripullone F, Ryan MG, Sala A, Sevanto S, Sperry JS, Vargas R, Vennetier M, Way DA, Xu C, Yepez EA, McDowell NG. 2017. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat Ecol Evol 1:1285–91.Google Scholar
  2. AEMET, Spanish Weather Agency. 2014. Avance climatológico mensual mes de septiembre. Murcia.Google Scholar
  3. Abeli T, Gentili R, Mondoni A, Orsenigo S, Rossi G. 2014. Effects of marginality on plant population performance. J Biogeogr 41:239–49.Google Scholar
  4. Allen CD, Breshears DD. 1998. Drought-induced shift of a forest—woodland ecotone: rapid landscape response to climate variation. Ecology 95:14839–42.Google Scholar
  5. Allen CD, Breshears DD, McDowell NG. 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6:art129.Google Scholar
  6. Anderegg WRL, Berry JA, Smith DD, Sperry JS, Anderegg LDL, Field CB. 2012. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc Natl Acad Sci 109:233–7.Google Scholar
  7. Araújo MB, New M. 2007. Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–7.Google Scholar
  8. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W. 2012. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–38.Google Scholar
  9. Benito Garzón M, Alía R, Robson TM, Zavala MA. 2011. Intraspecific variability and plasticity influence potential tree species distributions under climate change. Glob Ecol Biogeogr 20(5):766–78.Google Scholar
  10. Bigler C, Bräker OU, Bugmann H, Dobbertin M, Rigling A. 2006. Drought as an inciting mortality factor in scots pine stands of the Valais, Switzerland. Ecosystems 9:330–43.Google Scholar
  11. Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FK. 2002. Evaluating resource selection functions. Ecol Modell 157:281–300.Google Scholar
  12. Braun-Blanquet J, Bolòs O. 1957. The plant communities of the Central Ebro Basin and their dynamics. An la Estac Exp Aula Dei 5:1–266.Google Scholar
  13. Broennimann O, Thuiller W, Hughes G, Midgley GF, Alkemade JMR, Guisan A. 2006. Do geographic distribution, niche property and life form explain plants’ vulnerability to global change? Glob Change Biol 12:1079–93.Google Scholar
  14. Calenge C. 2015. Home Range Estimation in R: the adehabitatHR Package. R vignette:1–60.Google Scholar
  15. Clark JD, Dunn JE, Smith KG. 1993. A multivariate model of female black bear habitat use for a geographic information system. J Wildl Manag 57:519.Google Scholar
  16. Colwell RK, Brehm G, Cardelus CL, Gilman AC, Longino JT. 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science (80-) 322:258–61.Google Scholar
  17. Csergő AM, Salguero-Gómez R, Broennimann O, Coutts SR, Guisan A, Angert AL, Welk E, Stott I, Enquist BJ, McGill B, Svenning J-C, Violle C, Buckley YM. 2017. Less favourable climates constrain demographic strategies in plants. Gurevitch J, editor. Ecol Lett 20:969–80.Google Scholar
  18. D’Amen M, Rahbek C, Zimmermann NE, Guisan A. 2017. Spatial predictions at the community level: from current approaches to future frameworks. Biol Rev 92:169–87.Google Scholar
  19. Dallas T, Decker RR, Hastings A. 2017. Species are not most abundant in the centre of their geographic range or climatic niche. Anderson M, editor. Ecol Lett 20:1526–33.Google Scholar
  20. del Cacho M, Lloret F. 2012. Resilience of Mediterranean shrubland to a severe drought episode: the role of seed bank and seedling emergence. Plant Biol 14:458–66.Google Scholar
  21. de la Riva EG, Olmo M, Poorter H, Ubera JL, Villar R. 2016a. Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 mediterranean woody species along a water availability gradient. PLoS ONE 11:e0148788.Google Scholar
  22. de la Riva EG, Pérez-Ramos IM, Tosto A, Navarro-Fernández CM, Olmo M, Marañón T, Villar R. 2016b. Disentangling the relative importance of species occurrence, abundance and intraspecific variability in community assembly: a trait-based approach at the whole-plant level in Mediterranean forests. Oikos 125:354–63.Google Scholar
  23. Elith J, Burgman MA, Regan HM. 2002. Mapping epistematic uncertainties and vague conceps in predictions of species distribution. Ecol Modell 157:313–29.Google Scholar
  24. Elith J, Kearney M, Phillips S. 2010. The art of modelling range-shifting species. Methods Ecol Evol 1:330–42.Google Scholar
  25. Elith J, Leathwick JR. 2009. Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–97.Google Scholar
  26. Elith J, Leathwick JR, Hastie T. 2008. A working guide to boosted regression trees. J Anim Ecol 77:802–13.Google Scholar
  27. Esteve-Selma MA, Martínez-Fernández J, Hernández I, Montávez JP, Lopez JJ, Calvo JF, Robledano F. 2010. Effects of climatic change on the distribution and conservation of Mediterranean forests: the case of Tetraclinis articulata in the Iberian Peninsula. Biodivers Conserv 19:3809–25.Google Scholar
  28. Esteve-Selma MA, Martínez-Fernández J, Hernández I, Robledano F, Pérez-Navarro MA, Lloret F. 2015. Cambio climático y biodiversidad en el contexto de la Región de Murcia. In: Consejería de Agua Agricultura y Medio Ambiente, editor. Cambio climático en la Región de Murcia. Evaluación basada en indicadores. Murcia. pp 105–32.Google Scholar
  29. Fielding AH, Bell JF. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49.Google Scholar
  30. Franklin J. 2010. Mapping species distributions. Spatial inference and prediction. New York: Cambridge University Press.Google Scholar
  31. Franklin J, Davis FW, Ikegami M, Syphard AD, Flint LE, Flint AL, Hannah L. 2013. Modeling plant species distributions under future climates: how fine scale do climate projections need to be? Glob Change Biol 19:473–83.Google Scholar
  32. Franklin J, Serra-Diaz JM, Syphard AD, Regan HM. 2016. Global change and terrestrial plant community dynamics. Proc Natl Acad Sci 113:3725–34.Google Scholar
  33. Freckleton RP, Harvey PH, Pagel M. 2002. Phylogenetic analysis and comparative data. Am Nat 160:712–26.Google Scholar
  34. Greenwood S, Ruiz-Benito P, Martínez-Vilalta J, Lloret F, Kitzberger T, Allen CD, Fensham R, Laughlin DC, Kattge J, Bönisch G, Kraft NJB, Jump AS. 2017. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol Lett 20:539–53.Google Scholar
  35. Guiot J, Cramer W. 2016. Climate change: the 2015 Paris Agreement thresholds and Mediterranean basin ecosystems. Science (80-) 354:4528–32.Google Scholar
  36. Hamerlynck EP, McAuliffe JR. 2008. Soil-dependent canopy die-back and plant mortality in two Mojave Desert shrubs. J Arid Environ 72:1793–802.Google Scholar
  37. Hijmans ARJ, Phillips S, Leathwick J, Elith J, Hijmans MRJ. 2016. Package ‘dismo’ Species Distribution Modeling.Google Scholar
  38. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–78.Google Scholar
  39. Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A. 2006. Evaluating the ability of habitat suitability models to predict species presences. Ecol Modell 199:142–52.Google Scholar
  40. Huberty CJ. 1994. Applied discriminant analysis. New York: Wiley.Google Scholar
  41. IPCC, 2013. Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.Google Scholar
  42. Jump AS, Hunt JM, Peñuelas J. 2006. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Change Biol 12:2163–74.Google Scholar
  43. Lázaro R, Rodrigo FS, Gutiérrez L, Domingo F, Puigdefábregas J. 2001. Analysis of a 30-year rainfall record (1967–1997) in semi–arid SE Spain for implications on vegetation. J Arid Environ 48:373–95.Google Scholar
  44. Lenoir J, Graae BJ, Aarrestad PA, Alsos IG, Armbruster WS, Austrheim G, Bergendorff C, Birks HJB, Bråthen KA, Brunet J, Bruun HH, Dahlberg CJ, Decocq G, Diekmann M, Dynesius M, Ejrnaes R, Grytnes J-A, Hylander K, Klanderud K, Luoto M, Milbau A, Moora M, Nygaard B, Odland A, Ravolainen VT, Reinhardt S, Sandvik SM, Schei FH, Speed JDM, Tveraabak LU, Vandvik V, Velle LG, Virtanen R, Zobel M, Svenning J-C. 2013. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Glob Change Biol 19:1470–81.Google Scholar
  45. Lesica P, Crone EE. 2016. Arctic and boreal plant species decline at their southern range limits in the Rocky Mountains. Ecol Lett 20(2):166–74.Google Scholar
  46. Lloret F, Escudero A, Iriondo JM, Martínez-Vilalta J, Valladares F. 2012. Extreme climatic events and vegetation: the role of stabilizing processes. Glob Change Biol 18:797–805.Google Scholar
  47. Lloret F, García C. 2016. Inbreeding and neighbouring vegetation drive drought-induced die-off within juniper populations. Field K, editor. Funct Ecol 30:1696–704.Google Scholar
  48. Lloret F, Kitzberger T. 2018. Historical and event-based bioclimatic suitability predicts regional forest vulnerability to compound effects of severe drought and bark beetle infestation. Glob Change Biol 24(5):1952–64.Google Scholar
  49. Lloret F, de la Riva EG, Pérez-Ramos IM, Marañón T, Saura-Mas S, Díaz-Delgado R, Villar R. 2016. Climatic events inducing die-off in Mediterranean shrublands: are species responses related to their functional traits? Oecologia 180:961–73.Google Scholar
  50. Martinez-Meyer E, Diaz-Porras D, Peterson AT, Yanez-Arenas C. 2013. Ecological niche structure and rangewide abundance patterns of species. Biol Lett 9:20120637–20120637.Google Scholar
  51. Martínez-Vilalta J, Lloret F. 2016. Drought-induced vegetation shifts in terrestrial ecosystems: the key role of regeneration dynamics. Glob Planet Change 144:94–108.Google Scholar
  52. Mcdowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA, Mcdowell N, Pockman WT, Allen CD, David D, Mcdowell N, Cobb N, Kolb T, Plaut J, Sperry J. 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–39.Google Scholar
  53. Merow C, Smith MJ, Edwards TC, Guisan A, Mcmahon SM, Normand S, Thuiller W, Wüest RO, Zimmermann NE, Elith J. 2014. What do we gain from simplicity versus complexity in species distribution models? Ecography (Cop) 37:1267–81.Google Scholar
  54. Mouillot F, Rambal S, Joffre R. 2002. Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean ecosystem. Glob Change Biol 8:423–37.Google Scholar
  55. Ninyerola M, Pons X, Roure JM. 2000. A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int J Climatol 20:1823–41.Google Scholar
  56. Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42.Google Scholar
  57. Pearson RG, Dawson TP. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful ? Glob Ecol Biogeogr 12:361–71.Google Scholar
  58. Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC. 2006. Model-based uncertainty in species range prediction. J Biogeogr 33:1704–11.Google Scholar
  59. Peñuelas J, Lloret F, Montoya R. 2001. Severe drought effects on mediterranean woody flora in Spain. For Sci 47:214–18.Google Scholar
  60. Peterson AT, Andrew T, Soberón J, Pearson RG, Anderson RP, Martinez-Meyer E, Nakamura M, Araújo MB. 2011. Ecological niches and geographic distributions. Princeton: Princeton University Press.Google Scholar
  61. Phillips SJ, Dudík M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography (Cop) 31:161–75.Google Scholar
  62. Pironon S, Villellas J, Morris WF, Doak DF, García MB. 2015. Do geographic, climatic or historical ranges differentiate the performance of central versus peripheral populations? Glob Ecol Biogeogr 24:611–20.Google Scholar
  63. Pulliam HR. 2000. On the relationship between niche and distribution. Ecol Lett 3:349–61.Google Scholar
  64. Ridgeway G. 2007. Generalized boosted models: a guide to the gbm package. Compute 1:1–12.Google Scholar
  65. Rivas-Martínez S, Rivas-Sáenz S, Penas-Merino A. 2011. Worldwide bioclimatic classification system. Glob Geobot 1:1–638.Google Scholar
  66. Sapes G, Serra-Diaz JM, Lloret F. 2017. Species climatic niche explains drought-induced die-off in a Mediterranean woody community. Ecosphere 8:e01833.Google Scholar
  67. Serra-Diaz JM, Keenan TF, Ninyerola M, Sabaté S, Gracia C, Lloret F. 2013. Geographical patterns of congruence and incongruence between correlative species distribution models and a process-based ecophysiological growth model. J Biogeogr 40:1928–38.Google Scholar
  68. Sexton JP, Hangartner SB, Hoffmann AA. 2014. Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution (N Y) 68:1–15.Google Scholar
  69. Sexton JP, Mcintyre PJ, Angert AL, Rice KJ. 2009. Evolution and ecology of species range limits. Annu Rev Ecol Evol Syst 40:415–36.Google Scholar
  70. Sheffield J, Wood ÆEF. 2008. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105.Google Scholar
  71. Soberón J. 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–23.Google Scholar
  72. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE. 2004. Extinction risk from climate change. Nature 427:145–8.Google Scholar
  73. Thuiller W. 2004. Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10:2020–7.Google Scholar
  74. Thuiller W, Cile C, Albert H, Dubuis A, Randin C, Guisan A. 2010. Variation in habitat suitability does not always relate to variation in species’ plant functional traits. Biol Lett 6:120–3.Google Scholar
  75. Thuiller W, Lavorel S, Araújo MB. 2005. Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob Ecol Biogeogr 14:347–57.Google Scholar
  76. Valladares F, Benavides R, Rabasa SG, Diaz M, Pausas JG, Paula S, Simonson WD. 2014. Global change and Mediterranean forests: current impacts and potential responses. In: Forests and Global Change. pp 47–75.Google Scholar
  77. Valladares F, Vilagrosa A, Peñuelas J, Ogaya R, Julio J, Corcuera L, Sisó S. 2004. CAPÍTULO 6 Estrés hídrico: ecofisiología y escalas de la sequía. In: Valladares F, Ed. Ecologia del bosque mediterráneo en un mundo cambiante. Madrid: Ministerio. p 163–90.Google Scholar
  78. van der Maaten E, Hamann A, van der Maaten-Theunissen M, Bergsma A, Hengeveld G, van Lammeren R, Mohren F, Nabuurs G-J, Terhürne R, Sterck F. 2017. Species distribution models predict temporal but not spatial variation in forest growth. Ecol Evol 7:2585–94.Google Scholar
  79. Vicente-Serrano SM, Gouveia C, Camarero JJ, Beguería S, Trigo R, López-Moreno JI, Azorín-Molina C, Pasho E, Lorenzo-Lacruz J, Revuelto J, Morán-Tejeda E, Sanchez-Lorenzo A, Dickinson RE. 2013. Response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci USA 110:52–7.Google Scholar
  80. Walther G-R, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H, Czúcz B, Dauber J, Hickler T, Jarosík V, Kenis M, Klotz S, Minchin D, Moora M, Nentwig W, Ott J, Panov VE, Reineking B, Robinet C, Semenchenko V, Solarz W, Thuiller W, Vilà M, Vohland K, Settele J. 2009. Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–93.Google Scholar
  81. Webb CO, Donoghue MJ. 2005. Phylomatic: tree assembly for applied phylogenetics. Mol Ecol Notes 5:181–3.Google Scholar
  82. Weber MM, Stevens RD, Diniz-Filho JAF, Grelle CEV. 2016. Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta-analysis. Ecography (Cop) 40:817–28.Google Scholar
  83. Wood SN. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc 73:3–36.Google Scholar
  84. Wright JW, Davies KF, Lau JA, Mccall A, Mckay JK. 2006. Experimental verification of ecological niche modeling in a heterogeneous environment. Ecology 87:2433–9.Google Scholar
  85. Zavaleta ES, Shaw MR, Chiariello NR, Thomas BD, Cleland EE, Field CB, Mooney HA. 2003. Grassland responses to three years of elevated temperature, Co2, precipitation, and N deposition. Ecol Monogr 73:585–604.Google Scholar
  86. Zimmermann NE, Yoccoz NG, Edwards TC, Meier ES, Thuiller W, Guisan A, Schmatz DR, Pearman PB. 2009. Climatic extremes improve predictions of spatial patterns of tree species. Proc Natl Acad Sci USA 106(Suppl):19723–8.Google Scholar
  87. Zunzunegui M, Díaz Barradas MC, Ain-Lhout F, Clavijo A, García Novo F. 2005. To live or to survive in Doñana dunes: adaptive responses of woody species under a Mediterranean climate. Plant Soil 273:77–89.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre de Recerca Ecologica i Aplicacions Forestals (CREAF)Universitat Autonoma de BarcelonaBellaterraSpain
  2. 2.Division of Biological SciencesThe University of MontanaMissoulaUSA
  3. 3.Section for Ecoinformatics and Biodiversity, Department of BioscienceAarhus UniversityAarhus CDenmark
  4. 4.UMR SilvaAgroParisTech, Université de Lorraine, INRANancyFrance
  5. 5.Department of Ecology and HydrologyUniversity of MurciaMurciaSpain

Personalised recommendations