Advertisement

Ecosystems

pp 1–9 | Cite as

N-Isotopes in Feathers and Abundance of Eiders Respond to Nutrients in Seawater

  • Karsten LaursenEmail author
  • Anders Pape Møller
  • Keith A. Hobson
Article

Abstract

Nitrification of the environment has resulted from tremendous increases in the use of fertilizers for crop plants. This has increased runoff to coastal marine areas with consequences for primary production, benthos and upper trophic-level consumers, including sea ducks such as eiders Somateria mollissima. This species primarily relies on filter-feeding bivalves, especially blue mussels Mytilus edulis. Stable isotopes of nitrogen (measured as δ15N) are incorporated in the feathers of eiders during molt at a constant rate reflecting the amount in food eaten. We examined if δ15N values in feathers can link eiders to the nitrogen loads in the marine waters surrounding Denmark, which is the main wintering grounds for the Baltic/Wadden Sea eider population. We also assessed how the abundance of eiders is related to nutrients and dead zones with oxygen deficit. During 2014–2018 we collected samples from 489 eiders, and of these 100 were analyzed for stable isotopes δ15N. Eider feather δ15N was positively related to nitrogen abundance in marine waters. Local aggregations of eiders in late summer (the molting period) and in winter increased with the amount of nitrogen in the marine environment. Large eiders took longer to molt, they molted later and the daily growth increments of feathers were larger. Finally, larger eiders and eiders in higher numbers occurred in areas with hypoxia. These findings show that anthropogenic inputs to the coastal marine environment positively influence the abundance and aggregations of eiders.

Keywords

abundance dead zones feather growth molt nitrogen nitrification oxygen deficit Somateria mollissima 

Notes

Acknowledgements

We thank the hunters who collected birds for the study and Ako Osman Mirza who assisted in the laboratory. We also thank two anonymous reviewers for valuable comments and suggestions. This study received financial support from the 15 June Foundation (Ref.: 2015-B-132) in Denmark and an operating grant from Environment Canada to KAH. Chantel Gryba assisted with sample preparation and Geoff Koehler of the Environment Canada stable isotope facility in Saskatoon, Canada, assisted with stable isotope measurements.

Supplementary material

10021_2018_334_MOESM1_ESM.xlsx (229 kb)
Supplementary material 1 (XLSX 229 kb)

References

  1. Belliure J, Sorci G, Møller AP, Clobert J. 2000. Dispersal distances predict subspecies richness in birds. J Evol Biol 13:480–7.CrossRefGoogle Scholar
  2. Burger M, Jackson LE. 2003. Microbial immobilization of ammonium and nitrate in relation to nitrification rates in organic and conventional cropping systems. Soil Biol Biochem 35:29–36.CrossRefGoogle Scholar
  3. Bustnes JO, Erikstad KE, Bjørn TH. 2002. Body condition and brood abandonment in common eiders breeding in the high arctic. Waterbirds 25:63–6.CrossRefGoogle Scholar
  4. Cabana G, Rasmussen JB. 1996. Comparison of aquatic food chains using nitrogen isotopes. Proc Natl Acad Sci USA 93:10844–7.CrossRefGoogle Scholar
  5. Camargo JA, Alonso Á. 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems. Environ Int 32:831–49.CrossRefGoogle Scholar
  6. Cervencl A, Troost K, Dijkman E, de Jong M, Smit CJ, Leopold MF, Ens BJ. 2014. Distribution of wintering Common Eider Somateria mollissima in the Dutch Wadden Sea in relation to available food stocks. Mar Biol 162:153–68.CrossRefGoogle Scholar
  7. Cramp S, Ed. 1977. Handbook of the birds of Europe, the Middle East and North Africa, Vol. 1Oxford, UK: Oxford University Press.Google Scholar
  8. Conley DJ, Carstensen J, Ærtebjerg G, Christensen PB, Dalsgaard T, Hansen JL, Josefson AB. 2007. Long-term changes and impacts of hypoxia in Danish coastal waters. Ecol Appl 17(5 Supplement):165–84.CrossRefGoogle Scholar
  9. Diaz RJ, Rosenberg R. 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr Mar Biol Ann Rev 33:245–303.Google Scholar
  10. Duus K, Zinglersen E. 2000. Geografistatistik 2000. Copenhagen (in Danish): Geografforlaget.Google Scholar
  11. Ekroos J, Fox AD, Christensen TK, Petersen IK, Kilpi M, Jonsson JE, Green M, Laursen K, Cervencl A, de Boer P, Nilsson L, Meissner W, Garthe S, Öst M. 2012. Declines amongst breeding Eider Somateria mollissima numbers in the Baltic/Wadden Sea flyway. Ornis Fenn 89:81–90.Google Scholar
  12. Eurostat. 2018. Consumption estimate of manufactured fertilizers. http://epp.eurostat.ec.europa.eu/tgm/table.do?tab=table&init=1&language=en&pcode=tag00090&plugin=1.
  13. Falconer DS, Mackay TFC. 1996. Introduction to quantitative genetics. 4th edn. New York, NJ: Longman.Google Scholar
  14. Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN et al. 2013. The global nitrogen cycle in the twenty-first century. Phil Trans R Soc B Biol Sci 368:20130164.CrossRefGoogle Scholar
  15. Galloway JN, Cowling EB. 2002. Reactive nitrogen and the world: 200 years of change. Ambio 31:64–71.CrossRefGoogle Scholar
  16. Grubb TC Jr. 2006. Ptilochronology. New York, NY: Oxford University Press.Google Scholar
  17. Guillemette M, Himmelman JH, Barette C. 1993. Habitat selection by common eiders in winter and its interaction with flock size. Can J Zool 71:1259–66.CrossRefGoogle Scholar
  18. Hansen JW (ed.) 2016. Marine områder 2015. Scientific report from DCE: National Centre of Environment and Energy, No. 208. Department of Bioscience, Aarhus University, Aarhus, Denmark. Danish).Google Scholar
  19. Helcom. 2018. State of the Baltic Sea—second HELCOM holistic assessment 2011–2016. Baltic Sea Environment Proceedings 155.Google Scholar
  20. Hjort M, Josefson AB (ed.) 2010. Marine områder 2008. Technical report from DMU No. 760. Danish Environmental Research Institute, Aarhus University, Aarhus, Denmark (in Danish).Google Scholar
  21. Hobson KA. 1999. Stable-carbon and nitrogen isotope ratios of songbird feathers grown in two terrestrial biomes: implications for evaluating trophic relationships and breeding origins. Condor 101:799–805.CrossRefGoogle Scholar
  22. Jaatinen K, Öst M, Hobson KA. 2016. State-dependent capital and income breeding: a novel approach to evaluating individual strategies with stable isotopes. Front Zool 13:24.CrossRefGoogle Scholar
  23. Jovani R, Rohwer S. 2017. Fault bars in bird feathers: Mechanisms, and ecological and evolutionary causes and consequences. Biol Rev 92:1113–27.CrossRefGoogle Scholar
  24. Kelly JF. 2000. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zool 78:1–27.CrossRefGoogle Scholar
  25. Laursen K, Asferg K, Frikke J, Sunde P. 2009. Mussel fishery affects diet and reduces body condition of Eiders Somateria mollissima in the Wadden Sea. J Sea Res 62:22–30.CrossRefGoogle Scholar
  26. Laursen K, Kristensen PS, Clausen P. 2010. Assessment of blue mussels Mytilus edulis fisheries and waterbird shell-predator management in the Danish Wadden Sea. AMBIO 39:476–85.CrossRefGoogle Scholar
  27. Laursen K, Møller AP. 2014. Long-term changes in nutrients and mussel stocks are related to numbers of breeding eiders Somateria mollissima at a large Baltic Colony. PLoS One 9(4):e95851.CrossRefGoogle Scholar
  28. Laursen K, Møller AP, Holm TE. 2016. Dynamic group size and displacement as avoidance strategies by eiders in response to hunting. Wildl Biol 22:174–81.CrossRefGoogle Scholar
  29. Laursen K, Møller AP, Haugaard L, Öst M, Vainio J. 2019. Allocation of body reserves during winter in eider Somateria mollissima as preparation for spring migration and reproduction. J Sea Res 49:49–56.CrossRefGoogle Scholar
  30. Laursen K, Møller AP, Öst M. 2018. Body condition of eiders at Danish wintering grounds and at pre-breeding grounds in Åland. J Ornithol.  https://doi.org/10.1007/s10336-018-1609-1.
  31. Lehikoinen A, Kilpi M, Öst M. 2006. Winter climate affects subsequent breeding success of common eiders. Global Change Biol 12:1355–65.CrossRefGoogle Scholar
  32. McClave JT, Sincich T. 2003. Statistics. 9th edn. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  33. McCutchan JH, Lewis WM, Kendall C, McGrath CC. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–90.CrossRefGoogle Scholar
  34. Møller AP, Laursen K, Hobson KA. 2018. Retrospectively analysing condition in historical samples of birds. J Zool  https://doi.org/10.1111/jzo.12551.
  35. Nehls G, Ketzenberg CA. 2002. Do common eiders Somateria mollissima exhaust their food resources? A study on natural mussels Mytilus edulis beds in the Wadden Sea. Dan Rev Game Biol 16:47–61.Google Scholar
  36. Noer H. 1991. Distributions and movements of eider Somateria mollissima populations wintering in Danish waters analysed from ringing recoveries. Dan Rev Game Biol 14:1–32.Google Scholar
  37. Nielsen E, Richardson K. 1996. Can changes in the fisheries yield in the Kattegat be linked to changes in primary productions? ICES Mar Sci 53:988–94.CrossRefGoogle Scholar
  38. Öst M, Kilpi M. 1998. Blue mussels Mytilus edulis in the Baltic: good news for foraging eiders Somateria mollissima. Wildl Biol 4:81–9.CrossRefGoogle Scholar
  39. Öst M, Wickman M, Matulionis E, Steele BB. 2008. Habitat-specific clutch size and cost of incubation in eiders reconsidered. Oecologia 158:205–16.CrossRefGoogle Scholar
  40. Öst M, Steele BB. 2010. Age-specific nest site preference and success in Eider. Oecologia 162:59–69.CrossRefGoogle Scholar
  41. Pearson TH, Rosenberg R. 1978. Microbenthic succession in relation to organic enrichment and pollution of the marine environment. Mar Biol Ann Rev 16:229–311.Google Scholar
  42. Petersen IK, Pihl S, Hounisen JP, Holm TE, Clausen, P, Therkildsen OR, Christensen TK. 2006. Landsdækkende optælling af vandfugle januar-februar 2004. Scientific report from DMU nr. 606, Danish Environmental Institute, Aarhus University, Denmark (in Danish).Google Scholar
  43. Pihl S, Clausen P, Petersen IK, Nielsen RD, Laursen K, Bregnballe T, Holm TE, Søgaard B. 2013. Fugle 2004–2011. Scientific report from DCE, National Centre of Environment and Energy, No. 49. Department of Bioscience, Aarhus University, Denmark (in Danish).Google Scholar
  44. Phil S, Holm TE, Clausen P, Petersen IK, Nielsen RD, Laursen K, Bregnballe T, Søgaard B. 2015. Fugle 2012–2013. Scientific report from DCE, National Centre of Environment and Energy, No. 125. Department of Bioscience, Aarhus University, Denmark (in Danish).Google Scholar
  45. Philippart CJM, Beukema JJ, Cadee GC, Dekker R, Goedhart PW, van Iperen JM, Leopold MF, Herman PMJ. 2007. Impacts of nutrient reduction on coastal communities. Ecosystems 10:95–118.CrossRefGoogle Scholar
  46. Post DM. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–18.CrossRefGoogle Scholar
  47. Richardson K, Jørgensen BB. 2013. Eutrophication: Definition, history and effects. In: Jørgensen BB, Richardson K, Eds. Eutrophication in marine coastal ecosystems. Washington, DC: American Geophysical Union. p 1–19.Google Scholar
  48. SAS. 2012. JMP version 10.2. SAS Institute, Inc., Cary, NC.Google Scholar
  49. Svendsen, LM, Windolf J, Ellermann T. 2012. Tilførsel af næringsstoffer og organiske stoffer. Notat 2.8. DCE-National Center for Environment and Energy, Aarhus University. Denmark (in Danish).Google Scholar
  50. Svendsen LM, Maar M, Hansen JW. 2014. Nogle faglige aspekter ved anvendelse af HELCOMS reduktionsmål til national regulering af havbrug—Fase 1. Technical report from DCE, National Centre of Environment and Energy. Aarhus University. Denmark (in Danish).Google Scholar
  51. Thomsen H, Nielsen TG, Richardson K. 2002. Udvalget om Miljøpåvirkninger og fiskeriressourcer. Delrapport om eutrofiering. Technical report. DFU—rapport nr. 110-02, Danmarks Fiskeriundersøgelser., Denmark (in Danish).Google Scholar
  52. Van Stralen MR. 1995. De groei en aanvoer van gekweekte mosselen (Mytilus edulis) na 1952 en de ontwikkeling van het kokkelbestand (Cerastoderme edule) in relatie tot het voedselaanbod, eutrofiëring en andrere milieufactoren in de Waddenzee. DLO-Rijksinstituut voor Visserijonderzoek 95:016 (in Dutch).Google Scholar
  53. Vágási CI, Pap PL, Barta Z. 2010. Haste makes waste: Accelerated molt adversely affects the expression of melanin-based and depigmented plumage ornaments in house sparrows. PLoS One 5(12):e14215.CrossRefGoogle Scholar
  54. Vanderklift MA, Ponsard S. 2003. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–82.CrossRefGoogle Scholar
  55. Vitousek PM, Aber J, Howarth RW, Tilman GD, Matson PA, Schindler DW, Schlesinger WH, Tilman DG. 1997a. Human alteration of the global nitrogen cycle: causes and consequences. Ecol Appl 7:737–50.Google Scholar
  56. Vitousek PM, Mooney HA, Lubchenko J, Melillo JM. 1997b. Human domination of earth’s ecosystems. Science 277:494–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BioscienceAarhus UniversityÅrhusDenmark
  2. 2.Ecologie Systématique EvolutionUniversité Paris-Sud, CNRSOrsayFrance
  3. 3.AgroParisTechUniversité Paris-SaclayOrsay CedexFrance
  4. 4.Environment and Climate Change CanadaSaskatoonCanada
  5. 5.University of Western OntarioLondonCanada

Personalised recommendations