, Volume 21, Issue 5, pp 1042–1057 | Cite as

Monitoring Climate Sensitivity Shifts in Tree-Rings of Eastern Boreal North America Using Model-Data Comparison

Shifts in Tree Growth Sensivity to Climate
  • Clémentine OlsEmail author
  • Martin P. Girardin
  • Annika Hofgaard
  • Yves Bergeron
  • Igor Drobyshev


The growth of high-latitude temperature-limited boreal forest ecosystems is projected to become more constrained by soil water availability with continued warming. The purpose of this study was to document ongoing shifts in tree growth sensitivity to the evolving local climate in unmanaged black spruce (Picea mariana (Miller) B.S.P.) forests of eastern boreal North America (49°N–52°N, 58°W–82°W) using a comparative study of field and modeled data. We investigated growth relationships to climate (gridded monthly data) from observed (50 site tree-ring width chronologies) and simulated growth data (stand-level forest growth model) over 1908–2013. No clear strengthening of moisture control over tree growth in recent decades was detected. Despite climate warming, photosynthesis (main driver of the forest growth model) and xylem production (main driver of radial growth) have remained temperature-limited. Analyses revealed, however, a weakening of the influence of growing season temperature on growth during the mid- to late twentieth century in the observed data, particularly in high-latitude (> 51.5°N) mountainous sites. This shift was absent from simulated data, which resulted in clear model-data desynchronization. Thorough investigations revealed that desynchronization was mostly linked to the quality of climate data, with precipitation data being of particular concern. The scarce network of weather stations over eastern boreal North America (> 51.5°N) affects the accuracy of estimated local climate variability and critically limits our ability to detect climate change effects on high-latitude ecosystems, especially at high altitudinal sites. Climate estimates from remote sensing could help address some of these issues in the future.


boreal forests North America forest growth models climate change climate–growth relationships black spruce Picea mariana 



We thank Emeline Chaste for GIS analyses, Xiao Jing Guo for assistance with StandLEAP, Williams F. J Parsons for language revision and two anonymous reviewers and the Associate Editor for helpful comments on an earlier version of this manuscript. This study was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC Strategic and Discovery Grants), the Nordic Forest Research Cooperation Committee (SNS), the Canadian Forest Service (CFS) and the Research Council of Norway (Grant 160022/E50). This work was also supported by a fellowship from the Forest Complexity Modelling program (NSERC Strategic and Discovery Grants). The authors have no conflicts of interest to disclose.

Supplementary material

10021_2017_203_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2012 kb)


  1. Aber JD, Reich PB, Goulden ML. 1996. Extrapolating leaf CO2 exchange to the canopy: a generalized model of forest photosynthesis compared with measurements by eddy correlation. Oecologia 106:257–65.CrossRefPubMedGoogle Scholar
  2. Ågren GI, Axelsson B. 1980. Population respiration: a theoretical approach. Ecol Model 11:39–54.CrossRefGoogle Scholar
  3. Anyomi KA, Raulier F, Bergeron Y, Mailly D, Girardin MP. 2014. Spatial and temporal heterogeneity of forest site productivity drivers: a case study within the eastern boreal forests of Canada. Landsc Ecol 29:905–18.CrossRefGoogle Scholar
  4. Babst F, Bouriaud O, Papale D, Gielen B, Janssens IA, Nikinmaa E, Ibrom A, Wu J, Bernhofer C, Kostner B, Grunwald T, Seufert G, Ciais P, Frank D. 2014. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New Phytol 201:1289–303.CrossRefPubMedGoogle Scholar
  5. Bernier PY, Bréda N, Granier A, Raulier F, Mathieu F. 2002. Validation of a canopy gas exchange model and derivation of a soil water modifier for transpiration for sugar maple (Acer saccharum Marsh.) using sap flow density measurements. For Ecol Manag 163:185–96.CrossRefGoogle Scholar
  6. Boulanger Y, Arseneault D. 2004. Spruce budworm outbreaks in eastern Quebec over the last 450 years. Can J For Res 34:1035–43.CrossRefGoogle Scholar
  7. Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA. 1998. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–82.CrossRefGoogle Scholar
  8. Buermann W, Parida B, Jung M, MacDonald GM, Tucker CJ, Reichstein M. 2014. Recent shift in Eurasian boreal forest greening response may be associated with warmer and drier summers. Geophys Res Lett 41:1995–2002.CrossRefGoogle Scholar
  9. Carrer M, Urbinati C. 2004. Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85:730–40.CrossRefGoogle Scholar
  10. Charney ND, Babst F, Poulter B, Record S, Trouet VM, Frank D, Enquist BJ, Evans ME. 2016. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol Lett 19:1119–28.CrossRefPubMedGoogle Scholar
  11. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ. 2011. The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28.CrossRefGoogle Scholar
  12. Cook ER, Peters K. 1997. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–70.CrossRefGoogle Scholar
  13. Coulombe S, Bernier PY, Raulier F. 2009. Uncertainty in detecting climate change impact on the projected yield of black spruce (Picea mariana). Ecol Manag 259:730–8.CrossRefGoogle Scholar
  14. Dai H. 2014. CombinePValue: combine a vector of correlated p-values. R package version 1.0.
  15. Dai H, Leeder JS, Cui Y. 2014. A modified generalized Fisher method for combining probabilities from dependent tests. Front Genet 5:32. Scholar
  16. Daly C, Neilson RP, Phillips DL. 1994. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33:140–58.CrossRefGoogle Scholar
  17. D’Arrigo RD, Wilson R, Liepert B, Cherubini P. 2008. On the ‘divergence problem’ in northern forests: a review of the tree ring evidence and possible causes. Glob Planet Change 60:289–305.CrossRefGoogle Scholar
  18. Direction des inventaires forestiers. 2015. Norme de stratification écoforestière - Quatrième inventaire écoforestier du Québec méridional. Ministère des forêts, de la faune et des parcs. Last Accessed 09/02/2017
  19. ESRI. 2011. ArcGIS desktop: release 10. Redlands (CA): Environmental Systems Research Institute.Google Scholar
  20. Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90.CrossRefPubMedGoogle Scholar
  21. Fierravanti A, Cocozza C, Palombo C, Rossi S, Deslauriers A, Tognetti R. 2015. Environmental-mediated relationships between tree growth of black spruce and abundance of spruce budworm along a latitudinal transect in Quebec, Canada. Agric Meteorol 213:53–63.CrossRefGoogle Scholar
  22. Frechette E, Ensminger I, Bergeron Y, Gessler A, Berninger F. 2011. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate? Tree Physiol 31:1204–16.CrossRefPubMedGoogle Scholar
  23. Galván JD, Büntgen U, Ginzler C, Grudd H, Gutiérrez E, Labuhn I, Camarero JJ. 2015. Drought-induced weakening of growth–temperature associations in high-elevation Iberian pines. Glob Planet Change 124:95–106.CrossRefGoogle Scholar
  24. Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG. 2015. Boreal forest health and global change. Science 349:819–22.CrossRefPubMedGoogle Scholar
  25. Gifford RM, Evans LT. 1981. Photosynthesis, carbon partitioning, and yield. Annu Rev Plant Physiol 32:485–509.CrossRefGoogle Scholar
  26. Girard F, Payette S, Gagnon R. 2011. Dendroecological analysis of black spruce in lichen—spruce woodlands of the closed-crown forest zone in eastern Canada. Ecoscience 18:279–94.CrossRefGoogle Scholar
  27. Girardin MP, Bernier PY, Gauthier S. 2011a. Increasing potential NEP of eastern boreal North American forests constrained by decreasing wildfire activity. Ecosphere 2: Art 25, 1–23.Google Scholar
  28. Girardin MP, Bernier PY, Raulier F, Tardif JC, Conciatori F, Guo XJ. 2011b. Testing for a CO2 fertilization effect on growth of Canadian boreal forests. J Geophys Res 116:1–16.CrossRefGoogle Scholar
  29. Girardin MP, Bouriaud O, Hogg EH, Kurz W, Zimmermann NE, Metsaranta JM, de Jong R, Frank DC, Esper J, Buntgen U, Guo XJ, Bhatti J. 2016a. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc Natl Acad Sci USA 113:E8406–14.CrossRefPubMedGoogle Scholar
  30. Girardin MP, Guo XJ, Bernier PY, Raulier F, Gauthier S. 2012. Changes in growth of pristine boreal North American forests from 1950 to 2005 driven by landscape demographics and species traits. Biogeosciences 9:2523–36.CrossRefGoogle Scholar
  31. Girardin MP, Guo XJ, De Jong R, Kinnard C, Bernier P, Raulier F. 2014. Unusual forest growth decline in boreal North America covaries with the retreat of Arctic sea ice. Glob Change Biol 20:851–66.CrossRefGoogle Scholar
  32. Girardin MP, Hogg EH, Bernier PY, Kurz WA, Guo XJ, Cyr G. 2016b. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Glob Change Biol 22:627–43.CrossRefGoogle Scholar
  33. Girardin MP, Raulier F, Bernier PY, Tardif JC. 2008. Response of tree growth to a changing climate in boreal central Canada: a comparison of empirical, process-based, and hybrid modelling approaches. Ecol Model 213:209–28.CrossRefGoogle Scholar
  34. Gričar J, Prislan P, de Luis M, Gryc V, Hacurová J, Vavrčik H, Čufar K. 2015. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions. Front Plant Sci 6:730.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hall RJ, Raulier F, Price DT, Arseneault E, Bernier PY, Case BS, Guo XJ. 2006. Integrating remote sensing and climate data with process-based models to map forest productivity within West-Central Alberta’s boreal forest: Ecoleap-West. For Chron 82:159–76.CrossRefGoogle Scholar
  36. Hansen J, Ruedy R, Sato M, Lo K. 2010. Global surface temperature change. Rev Geophys 48:RG4004. Scholar
  37. Harris I, Jones PD, Osborn TJ, Lister DH. 2014. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Clim 34:623–42.CrossRefGoogle Scholar
  38. Haslinger K, Koffler D, Schöner W, Laaha G. 2014. Exploring the link between meteorological drought and streamflow: effects of climate-catchment interaction. Water Resour Res 50:2468–87.CrossRefGoogle Scholar
  39. Huang J-G, Tardif JC, Bergeron Y, Denneler B, Berninger F, Girardin MP. 2010. Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest. Glob Change Biol 16:711–31.CrossRefGoogle Scholar
  40. Ibáñez B, Ibáñez I, Gómez-Aparicio L, Ruiz-Benito P, García LV, Marañón T. 2014. Contrasting effects of climate change along life stages of a dominant tree species: the importance of soil-climate interactions. Divers Distrib 20:872–83.CrossRefGoogle Scholar
  41. IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.Google Scholar
  42. Ito A, Nishina K, Reyer CPO, François L, Henrot A-J, Munhoven Guy, Jacquemin I, Tian H, Yang J, Pan S, Morfopoulos C, Betts R, Hickler Thomas, Steinkamp J, Ostberg S, Schaphoff S, Ciais P, Chang J, Rafique Rashid, Zeng N, Zhao F. 2017. Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: benchmarking for impact assessment studies. Environ Res Lett 12:085001.CrossRefGoogle Scholar
  43. Jacoby GC, D’Arrigo RD. 1995. Tree ring width and density evidence of climatic and potential forest change in Alaska. Glob Biogeochem Cycles 9:227–34.CrossRefGoogle Scholar
  44. Jarvis A, Reuter HI, Nelson A, Guevara E. 2008. Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90 m Database.
  45. Jaume-Santero F, Pickler C, Beltrami H, Mareschal J-C. 2016. North American regional climate reconstruction from ground surface temperature histories. Clim Past 12:2181–94.CrossRefGoogle Scholar
  46. Krause C, Luszczynski B, Morin H, Rossi S, Plourde P-Y. 2012. Timing of growth reductions in black spruce stem and branches during the 1970s spruce budworm outbreak. Can J For Res 42:1220–7.CrossRefGoogle Scholar
  47. Landsberg JJ, Waring RH. 1997. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manag 95:209–28.CrossRefGoogle Scholar
  48. Lapenis AG, Lawrence GB, Heim A, Zheng C, Shortle W. 2013. Climate warming shifts carbon allocation from stemwood to roots in calcium-depleted spruce forests. Glob Biogeochem Cycles 27:101–7.CrossRefGoogle Scholar
  49. Latte N, Lebourgeois F, Claessens H. 2015. Increased tree-growth synchronization of beech (Fagus sylvatica L.) in response to climate change in northwestern Europe. Dendrochronologia 33:69–77.CrossRefGoogle Scholar
  50. Lavigne MB, Ryan MG. 1997. Growth and maintenance respiration rates of aspen, black spruce and jack pine stems at northern and southern BOREAS sites. Tree Physiol 17:543–51.CrossRefPubMedGoogle Scholar
  51. Mann ME, Bradley RS, Hughes MK. 1998. Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–87.CrossRefGoogle Scholar
  52. Ministère des Forêts, de la Faune et des Parcs du Québec (MFFPQ). 2014. Données sur les perturbations naturelles—Insecte: Tordeuse des bourgeons de l’épinette.
  53. Misson L. 2004. MAIDEN: a model for analyzing ecosystem processes in dendroecology. Can J For Res 34:874–87.CrossRefGoogle Scholar
  54. Natural Resources Canada. 2002. Canada3D, digital elevation model of the Canadian Landmass 30. Government of Canada, Natural Resources Canada, Earth Sciences Sector, Canada Centre for Mapping and Earth Observation, editors.
  55. Navarro-Cerrillo RM, Sánchez-Salguero R, Manzanedo RD, Camarero JJ, Fernández-Cancio Á. 2014. Site and age condition the growth responses to climate and drought of relict Pinus nigra subsp. salzmannii populations in southern Spain. Tree-Ring Res 70:145–55.CrossRefGoogle Scholar
  56. Novick KA, Ficklin DL, Stoy PC, Williams CA, Bohrer G, Oishi AC, Papuga SA, Blanken PD, Noormets A, Sulman BN, Scott RL, Wang L, Phillips RP. 2016. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat Clim Change 6:1023–7.CrossRefGoogle Scholar
  57. Ols C, Hofgaard A, Bergeron Y, Drobyshev I. 2016. Previous growing season climate controls the occurrence of black spruce growth anomalies in boreal forests of Eastern Canada. Can J For Res 46:696–705.CrossRefGoogle Scholar
  58. Pan Y, Chen JM, Birdsey R, McCullough K, He L, Deng F. 2011. Age structure and disturbance legacy of North American forests. Biogeosciences 8:715–32.CrossRefGoogle Scholar
  59. Paré D, Bernier P, Lafleur B, Titus BD, Thiffault E, Maynard DG, Guo X. 2013. Estimating stand-scale biomass, nutrient contents, and associated uncertainties for tree species of Canadian forests. Can J For Res 43:599–608.CrossRefGoogle Scholar
  60. R Core Team. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  61. Raulier F, Bernier PY, Ung C-H. 2000. Modeling the influence of temperature on monthly gross primary productivity of sugar maple stands. Tree Physiol 20:333–45.CrossRefPubMedGoogle Scholar
  62. Régnière J, Saint-Amant R, Béchard A. 2014. BioSIM 10—User’s manual. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec, QC. Inf. Rep. LAU-X-137E.
  63. Rennenberg H, Loreto F, Polle A, Brilli F, Fares S, Beniwal RS, Gessler A. 2006. Physiological responses of forest trees to heat and drought. Plant Biol 8:556–71.CrossRefPubMedGoogle Scholar
  64. Robitaille A, Saucier J-P. 1998. Paysages régionaux du Québec méridional. [réalisé par la Direction de la gestion des stocks forestiers et la Direction des relations publiques du Ministère des ressources naturelles du Québec]. Les Publications du Québec, Sainte-Foy, Québec. 213 ppGoogle Scholar
  65. Rossi S, Deslauriers A, Anfodillo T, Carrer M. 2008. Age-dependent xylogenesis in timberline conifers. New Phytol 177:199–208.PubMedGoogle Scholar
  66. Ryan MG. 1991. Effects of climate change on plant respiration. Ecol Appl 1:157–67.CrossRefPubMedGoogle Scholar
  67. Schneider U, Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Ziese M. 2015. GPCC Full Data Reanalysis Version 7.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data.Google Scholar
  68. Smith NG, Malyshev SL, Shevliakova E, Kattge J, Dukes JS. 2016. Foliar temperature acclimation reduces simulated carbon sensitivity to climate. Nat Clim Change 6:407–11.CrossRefGoogle Scholar
  69. Terrier A, Girardin MP, Périé C, Legendre P, Bergeron Y. 2013. Potential changes in forest composition could reduce impacts of climate change on boreal wildfires. Ecol Appl 23:21–35.CrossRefPubMedGoogle Scholar
  70. Trujillo E, Molotch NP, Goulden ML, Kelly AE, Bales RC. 2012. Elevation-dependent influence of snow accumulation on forest greening. Nat Geosci 5:705–9.CrossRefGoogle Scholar
  71. Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP. 1999. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400:149–51.CrossRefGoogle Scholar
  72. Verbyla D. 2015. Remote sensing of interannual boreal forest NDVI in relation to climatic conditions in interior Alaska. Environ Res Lett 10:125016.CrossRefGoogle Scholar
  73. Viereck LA, Johnston WF. 1990. Picea mariana (Mill.) B.S.P. Black spruce. In Burns, R. M. and Honkala, B. H. (technical coordinators), Silvics of North America, Volume 1. Conifers. USDA Forest Service Agriculture Handbook 654, Washington, DC.Google Scholar
  74. Vlam M, Baker PJ, Bunyavejchewin S, Zuidema PA. 2014. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees. Oecologia 174:1449–61.CrossRefPubMedGoogle Scholar
  75. Wang Y, Hogg EH, Price DT, Edwards J, Williamson T. 2014. Past and projected future changes in moisture conditions in the Canadian boreal forest. For Chron 90:678–91.CrossRefGoogle Scholar
  76. Whitlock MC. 2005. Combining probability from independent tests: the weighted Z-method is superior to Fisher’s approach. J Evol Biol 18:1368–73.CrossRefPubMedGoogle Scholar
  77. Wilson R, D’Arrigo R, Buckley B, Büntgen U, Esper J, Frank D, Luckman B, Payette S, Vose R, Youngblut D. 2007. A matter of divergence: tracking recent warming at hemispheric scales using tree ring data. J Geophys Res 112:D17103.CrossRefGoogle Scholar
  78. Wu X, Liu H, Guo D, Anenkhonov OA, Badmaeva NK, Sandanov DV. 2012. Growth decline linked to warming-induced water limitation in Hemi-Boreal forests. PLoS ONE 7(8):e42619. Scholar
  79. Wu Z, Ahlström A, Smith B, Ardö J, Eklundh L, Fensholt R, Lehsten V. 2017. Climate data induced uncertainty in model-based estimations of terrestrial primary productivity. Environ Res Lett 12:064013.CrossRefGoogle Scholar
  80. Zang C, Biondi F. 2015. treeclim: an R package for the numerical calibration of proxy-climate relationships. Ecography 38:431–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institut de recherche sur les forêts, Université du Québec en Abitibi-TémiscamingueRouyn-NorandaCanada
  2. 2.Laboratoire d’Inventaire ForestierInstitut National de l’Information Géographique et ForestièreNancyFrance
  3. 3.Natural Resources Canada, Canadian Forest Service, Laurentian Forestry CentreQuebecCanada
  4. 4.Norwegian Institute for Nature ResearchTrondheimNorway
  5. 5.Southern Swedish Forest Research CentreSwedish University of Agricultural SciencesAlnarpSweden

Personalised recommendations