Skip to main content
Log in

Crab Burrowing Limits Surface Litter Accumulation in a Temperate Salt Marsh: Implications for Ecosystem Functioning and Connectivity

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Burial of aboveground plant litter by animals reduces the amount available for surface transport and places it into a different environment, affecting decomposition rates and fluxes of organic matter to adjacent ecosystems. Here we show that in a Southwestern Atlantic salt marsh the burrowing crab Neohelice granulata buries aboveground plant litter at rates (0.5–8 g m−2 day−1) comparable to those of litter production (3 g m−2 day−1). Buried litter has a low probability (0.6%) of returning to the marsh surface. The formation of burrow excavation mounds on the marsh surface is responsible for most litter burial, whereas litter trapped in burrows was an order of magnitude lower than rates of burial under excavation mounds. Crab exclusion markedly increased surface litter accumulation (3.5-fold in just 21 days). Tides with the potential to transport significant amounts of surface litter are infrequent; hence, most litter is buried before it can be transported elsewhere or decomposes on the surface. Crab litter burial can account for the observed low levels of surface litter accumulation in this ecosystem and likely drives organic matter transformation and export. The impacts of ecosystem engineering by this crab species are therefore substantial and comparable in magnitude to the large effects found for tropical crabs and other litter-burying organisms, such as anecic earthworms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

REFERENCES

  • Alberti J, Cebrian J, Méndez-Casariego A, Canepuccia A, Escapa M, Iribarne O. 2011. Effects of nutrient enrichment and crab herbivory on a SW Atlantic salt marsh productivity. J Exp Mar Biol Ecol 405:99–104.

    Article  CAS  Google Scholar 

  • Alberti J, Montemayor D, Alvarez F, Méndez-Casariego Luppi T, Canepuccia A, Isaach J, Iribarne O. 2007. Changes in rainfall pattern affect crab herbivory rates in a SW Atlantic Salt marsh. J Exp Mar Biol Ecol 353:126–33.

    Article  Google Scholar 

  • Anderson JM. 1988. Invertebrate-mediated transport processes in soils. Agr Ecosyst Environ 24:5–19.

    Article  Google Scholar 

  • Barutot RA, D’Incao F, Fonseca DB. 2011. Natural diet of Neohelice granulata (Dana, 1851) (Crustacea, Varunidae) in two salt marshes of the estuarine region of the Lagoa dos Patos lagoon. Braz Arch Biol Technol 54:91–8.

    Article  Google Scholar 

  • Bas C, Lancia JP, Luppi T, Méndez-Casariego A, Kittlein M, Spivak E. 2014. Influence of tidal regime, diurnal phase, habitat and season on feeding of an intertidal crab. Mar Ecol 35:319–31.

    Article  Google Scholar 

  • Batzer DP, Wissinger SA. 1996. Ecology of insect communities in nontidal wetlands. Annu Rev Entomol 41:75–100.

    Article  PubMed  CAS  Google Scholar 

  • Bertness MD, Miller T. 1984. The distribution and dynamics of Uca pugnax (Smith) burrows in a New England salt marsh. J Exp Mar Biol Ecol 83:211–37.

    Article  Google Scholar 

  • Bohlen PJ, Scheu S, Hale CM, McLean MA, Migge S, Groffman PM, Parkinson D. 2004. Non-native invasive earthworms as agents of change in northern temperate forests. Front Ecol Environ 2:427–35.

    Article  Google Scholar 

  • Bortolus A, Iribarne OO. 1999. Effects of the SW Atlantic burrowing crab Chasmagnathus granulata on a Spartina salt marsh. Mar Ecol Prog Ser 178:79–88.

    Article  Google Scholar 

  • Botto F, Iribarne O, Gutiérrez JL, Bava J, Gagliardini A, Valiela I. 2006. Ecological importance of passive deposition of organic matter into burrows of the SW Atlantic crab Chasmagnathus granulatus. Mar Ecol Prog Ser 312:201–10.

    Article  Google Scholar 

  • Bouchard V, Lefeuvre JC. 2000. Primary production and macrodetritus dynamics in a European salt marsh: carbon and nitrogen budgets. Aquat Bot 67:23–42.

    Article  CAS  Google Scholar 

  • Bouma TJ, De Vries MB, Low E, Peralta G, Tánczos IV, van de Koppel J, Herman PJ. 2005. Trade-offs related to ecosystem engineering: a case study on stiffness of emerging macrophytes. Ecology 86:2187–99.

    Article  Google Scholar 

  • Breitfuss MJ, Connolly RM, Dale PE. 2004. Densities and aperture sizes of burrows constructed by Helograpsus haswellianus (Decapoda: Varunidae) in saltmarshes with and without mosquito-control runnels. Wetlands 24:14–22.

    Article  Google Scholar 

  • Brinson MM, Lugo AE, Brown S. 1981. Primary productivity, decomposition and consumer activity in freshwater wetlands. Annu Rev Ecol Syst 12:123–61.

    Article  Google Scholar 

  • Brown GG, Barois I, Lavelle P. 2000. Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur J Soil Biol 36:177–98.

    Article  Google Scholar 

  • Conners ME, Naiman RJ. 1984. Particulate allochthonous inputs: relationships with stream size in an undisturbed watershed. Can J Fish Aquat Sci 41:1473–84.

    Article  Google Scholar 

  • Cribari-Neto F, Zeileis A. 2010. Beta Regression in R. J Stat Softw 34:1–24.

    Article  Google Scholar 

  • Cunha SR, Asmus M, Costa CSB. 2005. Production dynamics of Spartina alterniflora salt marshes in the estuary of Patos Lagoon (RS, Brazil): a simulation model approach. Braz J Aquat Sci Technol 9:75–85.

    Article  Google Scholar 

  • Daleo P, Fanjul E, Méndez-Casariego A, Silliman BR, Bertness MD, Iribarne O. 2007. Ecosystem engineers activate mycorrhizal mutualism in salt marshes. Ecol Lett 10:902–8.

    Article  PubMed  Google Scholar 

  • D’Incao F, Silva KG, Ruffino ML, Braga AC. 1990. Hábito alimentar do caranguejo Chasmagnathus granulata Dana, 1851 na barra do Rio Grande, RS (Decapoda, Grapsidae). Atlântica 12:85–93.

    Google Scholar 

  • Facelli JM, Pickett ST. 1991. Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1–32.

    Article  Google Scholar 

  • Fanjul E, Escapa M, Montemayor D, Addino M, Alvarez MF, Grela MA, Iribarne O. 2015. Effect of crab bioturbation on organic matter processing in South West Atlantic intertidal sediments. J Sea Res 95:206–16.

    Article  Google Scholar 

  • Fanjul E, Grela MA, Canepuccia A, Iribarne O. 2008. The Southwest Atlantic intertidal burrowing crab Neohelice granulata modifies nutrient loads of phreatic waters entering coastal area. Estuar Coast Shelf Sci 79:300–6.

    Article  Google Scholar 

  • Fanjul E, Grela MA, Iribarne OO. 2007. Effects of the dominant SW Atlantic intertidal burrowing crab Chasmagnathus granulatus on sediment chemistry and nutrient distribution. Mar Ecol Prog Ser 341:177–90.

    Article  CAS  Google Scholar 

  • Fasano JL, Hernández MA, Isla FI, Schnack EJ. 1982. Aspectos evolutivos y ambientales de la laguna Mar Chiquita (Provincia de Buenos Aires, Argentina). Oceanol Acta SP:285-292.

  • Ferrari SLP, Cribari-Neto F. 2004. Beta regression for modelling rates and proportions. J Appl Stat 31:799–815.

    Article  Google Scholar 

  • Findlay SEG, Howe K, Austin HK. 1990. Comparison of detritus dynamics in two tidal freshwater wetlands. Ecology 71:288–95.

    Article  Google Scholar 

  • Foster M, Stubbendieck J. 1980. Effects of the plains pocket gopher (Geomys bursarius) on rangeland. J Range Manag 33:74–8.

    Article  Google Scholar 

  • Gallagher JL, Reimold RJ, Linthurst RA, Pfeiffer WJ. 1980. Aerial production, mortality, and mineral accumulation: export dynamics in Spartina alterniflora and Juncus roemerianus stands. Ecology 61:303–12.

    Article  Google Scholar 

  • Gillis LG, Bouma TJ, Jones CG, Van Katwijk MM, Nagelkerken I, Jeuken CJL, Herman PMJ, Ziegler AD. 2014. Potential for landscape-scale positive interactions among tropical marine ecosystems. Mar Ecol Prog Ser 503:289–303.

    Article  Google Scholar 

  • Green PT, Lake PS, O’Dowd DJ. 1999. Monopolization of litter processing by a dominant land crab on a tropical oceanic island. Oecologia 119:435–44.

    Article  PubMed  Google Scholar 

  • Gutiérrez JL, Jones CG, Groffman PM, Findlay SEG, Iribarne OO, Ribeiro PD, Bruschetti CM. 2006. The contribution of crab burrow excavation to carbon availability in superficial salt-marsh sediments. Ecosystems 9:647–58.

    Article  CAS  Google Scholar 

  • Halupa PJ, Howes BL. 1995. Effects of tidally mediated litter moisture content on decomposition of Spartina alterniflora and S. patens. Mar Biol 123:379–91.

    Article  Google Scholar 

  • Hemminga MA, Huiskes AHL, Steegstra M, Van Soelen J. 1996. Assessment of carbon allocation and biomass production in a natural stand of the salt marsh plant Spartina anglica using 13C. Mar Ecol Prog Ser 130:169–78.

    Article  CAS  Google Scholar 

  • Hendrix PF, Parmelee RW, Crossley DA, Coleman DC, Odum EP, Groffman PM. 1986. Detritus food webs in conventional and no-tillage agroecosystems. BioScience 36:374–80.

    Article  Google Scholar 

  • Holland EA, Coleman DC. 1987. Litter placement effects on microbial and organic matter dynamics in an agroecosystem. Ecology 68:425–33.

    Article  Google Scholar 

  • Iribarne OO, Bortolus A, Botto F. 1997. Between-habitat differences in burrow characteristics and trophic modes in the burrowing crab Chasmagnathus granulata. Mar Ecol Prog Ser 155:137–45.

    Article  Google Scholar 

  • Iribarne O, Botto F, Martinetto P, Gutiérrez JL. 2000. The role of burrows of the SW Atlantic intertidal crab Chasmagnathus granulata in trapping debris. Mar Pollut Bull 40:1057–62.

    Article  CAS  Google Scholar 

  • Isacch JP, Costa CSB, Rodríguez-Gallego L, Conde D, Escapa M, Gagliardini DA, Iribarne OO. 2006. Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. J Biogeogr 33:888–900.

    Article  Google Scholar 

  • Jackson D, Long SP, Mason CF. 1986. Net primary production, decomposition and export of Spartina anglica on a Suffolk salt-marsh. J Ecol 74:647–62.

    Article  Google Scholar 

  • Jones CG, Gutiérrez JL, Byers JE, Crooks JA, Lambrinos JG, Talley TS. 2010. A framework for understanding physical ecosystem engineering by organisms. Oikos 119:1862–9.

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M. 1994. Organisms as ecosystem engineers. Oikos 69:373–86.

    Article  Google Scholar 

  • Kristensen E. 2008. Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J Sea Res 59:30–43.

    Article  Google Scholar 

  • Leendertse PC, Roozen AJM, Rozema J. 1997. Long-term changes (1953–1990) in the salt marsh vegetation at the Boschplaat on Terschelling in relation to sedimentation and flooding. Plant Ecol 132:49–58.

    Article  Google Scholar 

  • Liao CZ, Luo YQ, Fang CM, Chen JK, Li B. 2008. Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary. Oecologia 156:589–600.

    Article  PubMed  Google Scholar 

  • Long JS. 1997. Regression models for categorical and limited dependent variables. Thousand Oaks (CA): Sage Publications.

    Google Scholar 

  • Luppi T, Bas C, Méndez-Casariego A, Albano M, Lancia JP, Kittlein M, Rosenthal A, Farías N, Spivak E, Iribarne O. 2013. The influence of habitat, season and tidal regime in the activity of the intertidal crab Neohelice (= Chasmagnathus) granulata. Helgoland Mar Res 67:300.

    Article  Google Scholar 

  • Manly BFJ. 1998. Randomization, bootstrap and Monte Carlo methods in biology. London (UK): Chapman & Hall.

    Google Scholar 

  • McCullagh P, Nelder JA. 1989. Generalized linear models. London (UK): Chapman and Hall.

    Book  Google Scholar 

  • Méndez-Casariego A, Alberti J, Luppi T, Daleo P, Iribarne O. 2011. Habitat shifts and spatial distribution of the intertidal crab Neohelice (Chasmagnathus) granulata Dana. J Sea Res 66:87–94.

    Article  Google Scholar 

  • Metzler GM, Smock LA. 1990. Storage and dynamics of subsurface detritus in a sand-bottomed stream. Can J Fish Aquat Sci 47:588–94.

    Article  Google Scholar 

  • Middleton BA, McKee KL. 2001. Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J Ecol 89:818–28.

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG. 1993. Wetlands. New York (NY): Van Nostrand Reinhold.

    Google Scholar 

  • Montemayor DI, Addino M, Fanjul E, Escapa M, Alvarez MF, Botto F, Iribarne OO. 2011. Effect of dominant Spartina species on salt marsh detritus production in SW Atlantic estuaries. J Sea Res 66:104–10.

    Article  Google Scholar 

  • O’Dowd DJ, Lake PS. 1989. Red crabs in rain forest, Christmas Island: removal and relocation of leaf-fall. J Trop Ecol 5:337–48.

    Article  Google Scholar 

  • Polis GA, Anderson WB, Holt RD. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316.

    Article  Google Scholar 

  • R Development Core Team. 2017. R: A language and environment for statistical computing v 3.4.1. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/, accessed 30 June 2017.

  • Robertson AI. 1986. Leaf-burying crabs: their influence on energy flow and export from mixed mangrove forests (Rhizophora spp.) in Northeastern Australia. J Exp Mar Biol Ecol 116:235–47.

    Article  Google Scholar 

  • Sherman PM. 2003. Effects of land crabs on leaf litter distributions and accumulations in a mainland tropical rain forest. Biotropica 35:365–74.

    Article  Google Scholar 

  • Suárez ER, Fahey TJ, Yavitt JB, Groffman PM, Bohlen PJ. 2006. Patterns of litter disappearance in a northern hardwood forest invaded by exotic earthworms. Ecol Appl 16:154–65.

    Article  PubMed  Google Scholar 

  • Sun Z, Mou X. 2016. Effects of sediment burial disturbance on macro and microelement dynamics in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary, China. Environ Sci Pollut Res 23:5189–202.

    Article  CAS  Google Scholar 

  • Sun ZG, Mou XJ, Wang LL, Sun WL, Sun WG. 2015. Effects of sedimentation intensity on decomposition and nitrogen dynamics of Suaeda salsa litter in salt marshes in tidal bank of the Yellow River estuary. Wetland Sci 13:135–44.

    Google Scholar 

  • Takeda S, Kurihara Y. 1987. The effects of burrowing of Helice tridens (De Haan) on the soil of a salt marsh habitat. J Exp Mar Biol Ecol 113:79–89.

    Article  Google Scholar 

  • Taylor DI, Allanson BR. 1993. Impacts of dense crab populations on carbon exchanges across the surface of a salt-marsh. Mar Ecol Prog Ser 101:119–29.

    Article  Google Scholar 

  • Twilley RR, Pozo M, Garcia VH, Rivera-Monroy VH, Bodero RZA. 1997. Litter dynamics in riverine mangrove forests in the Guayas River estuary, Ecuador. Oecologia 111:109–22.

    Article  PubMed  Google Scholar 

  • Valiela I, Teal JM, Allen SD, Van Etten R, Goehringer D, Volkmann S. 1985. Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of above-ground organic matter. J Exp Mar Biol Ecol 89:29–54.

    Article  CAS  Google Scholar 

  • van de Koppel J, van der Heide T, Altieri AH, Eriksson BK, Bouma TJ, Olff H, Silliman BR. 2015. Long-distance interactions regulate the structure and resilience of coastal ecosystems. Annu Rev Mar Sci 7:139–58.

    Article  Google Scholar 

  • Vera F, Gutiérrez JL, Ribeiro PD. 2009. Aerial and detritus production of the cordgrass Spartina densiflora in a Southwestern Atlantic salt marsh. Botany 87:482–91.

    Article  Google Scholar 

  • Walker LR, Shiels AB. 2008. Post-disturbance erosion impacts carbon fluxes and plant succession on recent tropical landslides. Plant Soil 313:205–16.

    Article  CAS  Google Scholar 

  • Wang J, Zhang X, Jiang L, Bertness M, Fang C, Chen J, Hara T, Li B. 2010. Bioturbation of burrowing crabs promotes sediment turnover and carbon and nitrogen movements in an estuarine salt marsh. Ecosystems 13:586–99.

    Article  CAS  Google Scholar 

  • Warren RS, Niering WA. 1993. Vegetation changes on a Northeast tidal marsh: interaction of sea-level rise and marsh accretion. Ecology 74:96–103.

    Article  Google Scholar 

  • Wasserman L. 2004. All of statistics: a concise course in statistical inference. New York (NY): Springer.

    Book  Google Scholar 

  • Welbourn ML, Stone EL, Lassoie JP. 1981. Distribution of net litter inputs with respect to slope position and wind direction. Forest Sci 27:651–9.

    Google Scholar 

  • Wolfrath B. 1993. Observations on the behaviour of the European fiddler crab Uca tangeri. Mar Ecol Prog Ser 100:111–18.

    Article  Google Scholar 

  • Zacheis A, Ruess RW, Hupp JW. 2002. Nitrogen dynamics in an Alaskan salt marsh following spring use by geese. Oecologia 130:600–8.

    Article  PubMed  Google Scholar 

  • Zar JH. 1984. Biostatistical analysis. Englewood Cliffs (NJ): Prentice Hall.

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

We thank Martín Bruschetti, Andrés Rodríguez, and Federico Vera for field assistance, Marcelo Kittlein for statistical advice, and Oscar Iribarne for laboratory space and facilities at Universidad Nacional de Mar del Plata during the execution of this project. We are also indebted to Mónica Fiore (Servicio de Hidrografía Naval, Argentina) for tidal measurements from Mar del Plata port. This paper benefited from the comments made by the Subject-Matter Editor, Dr. Tim Essington, and two anonymous reviewers. Research was supported by the Andrew W. Mellon Foundation and the Cary Institute of Ecosystem Studies (CGJ, JLG, PMG and SEGF). JLG and PDR were supported by scholarships from CONICET at the time of this study. This is a contribution to the programs of GrIETA and the Cary Institute of Ecosystem Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge L. Gutiérrez.

Additional information

Authors contributions

All authors contributed to study conception, study design, interpretation of findings, and commenting on manuscript drafts. JLG performed the field research. JLG, CGJ, and PDR were primarily responsible for data analysis. JLG and CGJ wrote and edited the drafts of the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez, J.L., Jones, C.G., Ribeiro, P.D. et al. Crab Burrowing Limits Surface Litter Accumulation in a Temperate Salt Marsh: Implications for Ecosystem Functioning and Connectivity. Ecosystems 21, 1000–1012 (2018). https://doi.org/10.1007/s10021-017-0200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-017-0200-6

Keywords

Navigation