Advertisement

Ecosystems

pp 1–14 | Cite as

Greenhouse Gas Emissions from Freshwater Reservoirs: What Does the Atmosphere See?

  • Yves T. Prairie
  • Jukka Alm
  • Jake Beaulieu
  • Nathan Barros
  • Tom Battin
  • Jonathan Cole
  • Paul del Giorgio
  • Tonya DelSontro
  • Frédéric Guérin
  • Atle Harby
  • John Harrison
  • Sara Mercier-Blais
  • Dominique Serça
  • Sebastian Sobek
  • Dominic Vachon
Article

Abstract

Freshwater reservoirs are a known source of greenhouse gas (GHG) to the atmosphere, but their quantitative significance is still only loosely constrained. Although part of this uncertainty can be attributed to the difficulties in measuring highly variable fluxes, it is also the result of a lack of a clear accounting methodology, particularly about what constitutes new emissions and potential new sinks. In this paper, we review the main processes involved in the generation of GHG in reservoir systems and propose a simple approach to quantify the reservoir GHG footprint in terms of the net changes in GHG fluxes to the atmosphere induced by damming, that is, ‘what the atmosphere sees.’ The approach takes into account the pre-impoundment GHG balance of the landscape, the temporal evolution of reservoir GHG emission profile as well as the natural emissions that are displaced to or away from the reservoir site resulting from hydrological and other changes. It also clarifies the portion of the reservoir carbon burial that can potentially be considered an offset to GHG emissions.

Keywords

GHG footprint reservoirs CO2 and CH4 emissions C burial 

References

  1. Abril G, Guérin F, Richard S, Delmas R, Galy-Lacaux C, Gosse P, Tremblay A, Varfalvy L, Dos Santos MA, Matvienko B. 2005. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Global Biogeochem Cycles 19:1–16.CrossRefGoogle Scholar
  2. Abril G, Parize M, Pérez MAP, Filizola N. 2013. Wood decomposition in Amazonian hydropower reservoirs: an additional source of greenhouse gases. J South Am Earth Sci 44:104–7.CrossRefGoogle Scholar
  3. Algesten G, Sobek S, Bergström AK, Ågren A, Tranvik LJ, Jansson M. 2004. Role of lakes for organic carbon cycling in the boreal zone. Glob Change Biol 10:141–7.CrossRefGoogle Scholar
  4. Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VLM, del Giorgio PA, Roland F. 2011. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci 4:593–6.CrossRefGoogle Scholar
  5. Bastien J. 2005. Impacts of ultraviolet radiation on aquatic exosystems: greenhouse gas emissions and implications for hydroelectric reservoirs. In: Tremblay, Varfalvy, Roehm and Garneau, Eds. Chapter 21, GHG Emissions from Boreal Reservoirs and Natural Aquatic Ecosystems. In: Greenhouse Gas Emissions—Fluxes and Processes pp 509–27.Google Scholar
  6. Bastviken D, Ejlertsson J, Tranvik LJ. 2002. Measurement of methane oxidation in lakes: a comparison of methods. Environ Sci Technol 36:3354–61.CrossRefPubMedGoogle Scholar
  7. Bastviken D, Persson L, Odham G, Tranvik L. 2004a. Degradation of dissolved organic matter in oxic and anoxic lake water. Limnol Oceanogr 49:109–16.CrossRefGoogle Scholar
  8. Bastviken D, Cole J, Pace M, Tranvik L. 2004b. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles 18:1–12.CrossRefGoogle Scholar
  9. Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-prast A. 2011. Freshwater methane emissions offset the continental carbon sink. Science 331:50.CrossRefPubMedGoogle Scholar
  10. Bernardo JWY, Mannich M, Hilgert S, Fernandes CVS, Bleninger T. 2016. A method for the assessment of long-term changes in carbon stock by construction of a hydropower reservoir. AMBIO 4:1–12.Google Scholar
  11. Blodau C, Moore TR. 2003. Experimental response of peatland carbon dynamics to a water table fluctuation. Aqua Sci 65:47–62.CrossRefGoogle Scholar
  12. Bogard MJ, del Giorgio PA, Boutet L, Chaves MCG, Prairie YT, Merante A, Derry AM. 2014. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat Commun 5:5350.CrossRefPubMedGoogle Scholar
  13. Borges AV, Darchambeau F, Teodoru CR, Marwick TR, Tamooh F, Geeraert N, Omengo FO, Guérin F, Lambert T, Morana C, Okuku E, Bouillon S. 2015. Globally significant greenhouse-gas emissions from African inland waters. Nat Geosci 8:637–42.CrossRefGoogle Scholar
  14. Boudreau BP, Ruddick BR. 1991. On a reactive continuum representation of organic matter diagenesis. Am J Sci 291:507–38.CrossRefGoogle Scholar
  15. Butman D, Raymond PA. 2011. Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geosci 4:1–4.CrossRefGoogle Scholar
  16. Cailleaud E. 2015. Cycles du carbone et de l’azote et émissions de gaz à effet de serre (CH4, CO2 et N2O) du lac de barrage de Petit Saut et du fleuve Sinnamary en aval du barrage (Guyane Française) (PhD dissertation). Toulouse: Université de Toulouse.Google Scholar
  17. Catalán N, Kellerman AM, Peter H, Carmona F, Tranvik LJ. 2015. Absence of a priming effect on dissolved organic carbon degradation in lake water. Limnol Oceanogr 60:159–68.CrossRefGoogle Scholar
  18. Chanudet V, Descloux S, Harby A, Sundt H, Hansen BH, Brakstad O, Serça D, Guérin F. 2011. Gross CO2 and CH4 emissions from the Nam Ngum and Nam Leuk sub-tropical reservoirs in Lao PDR. Sci Total Environ 409:5382–91.CrossRefPubMedGoogle Scholar
  19. Chen H, Wu Y, Yuan X, Gao Y, Wu N, Zhu D. 2009. Methane emissions from newly created marshes in the drawdown area of the Three Gorges Reservoir. J Geophys Res 114:GB4007.  https://doi.org/10.1029/2009JD012410.Google Scholar
  20. Clow DW, Stackpoole SM, Verdin KL, Butman DE, Zhu Z, Krabbenhoft DP, Striegl RG. 2015. Organic carbon burial in lakes and reservoirs of the conterminous United States. Environ Sci Technol 49:7614–22.CrossRefPubMedGoogle Scholar
  21. Cole J, Prairie YT, Caraco N, Mcdowell W, Tranvik L, Striegl R, Duarte C, Kortelainen P, Downing J, Middelburg J, Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–84.CrossRefGoogle Scholar
  22. Conrad R. 2005. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org Geochem 36:739–52.CrossRefGoogle Scholar
  23. Courchesne F, Turmel MC. 2005. Mass blance of organic carbon in the soils of forested watersheds from northeastern Noarth America. In: Tremblay, Varfalvy, Roehm, Garneau, Eds. Chapter 16 in GHG emissions from boreal reservoirs and natural aquatic ecosystems. Greenhouse Gas Emissions—Fluxes and Processes, pp 383–420.Google Scholar
  24. Coursolle C, Margolis HA, Giasson MA, Bernier PY, Amiro BD, Arain MA, Barr AG, Black TA, Goulden ML, McCaughey JH, Chen JM, Dunn AL, Grant RF, Lafleur PM. 2012. Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests. Agric For Meteorol 165:136–48.CrossRefGoogle Scholar
  25. Dean WE, Gorham E. 1998. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26:535–8.CrossRefGoogle Scholar
  26. Deemer BR, Harrison JA, Li S, Beaulieu JJ, DelSontro T, Barros N, Bezerra-Neto JF, Powers SM, Dos Santos MA, Vonk JA. 2016. greenhouse gas emissions from reservoir water surfaces: a new global synthesis manuscript. BioScience 66:949–64.CrossRefGoogle Scholar
  27. Delmas R, Galy-lacaux C. 2001. Emissions of greenhouse gases from the tropical hydroelectric reservoir of Petit Saut (French Guiana) compared with emissions from thermal alternatives. Glob Biogeochem Cycles 15:993–1003.CrossRefGoogle Scholar
  28. DelSontro T, Kunz MJ, Kempter T, Wüest A, Wehrli B, Senn DB. 2011. Spatial heterogeneity of methane ebullition in a large tropical reservoir. Environ Sci Technol 45:9866–73.CrossRefPubMedGoogle Scholar
  29. DelSontro T, Mcginnis DF, Sobek S, Ostrovsky I, Wehrli B. 2010. Extreme methane emissions from a swiss hydropower Reservoir: contribution from bubbling sediments. Environ Sci Technol 44:2419–25.CrossRefPubMedGoogle Scholar
  30. DelSontro T, Boutet L, St-Pierre A, del Giorgio PA, Prairie YT. 2016. Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity. Limnol Oceanogr 61:S62–77.CrossRefGoogle Scholar
  31. DelSontro T, del Giorgio PA, Prairie YT. 2017. No longer a paradox: the interaction between physical transport and biological processes explains the spatial distribution of methane within and across lakes. Ecosystems (Accepted).Google Scholar
  32. Descloux S, Chanudet V, Serça D, Guérin F. 2017. Methane and nitrous oxide annual emissions from an old eutrophic temperate reservoir. Sci Total Environ 598:959–72.CrossRefPubMedGoogle Scholar
  33. Deshmukh C, Guérin F, Labat D, Pighini S, Vongkhamsao A, Guédant P, Rode W, Godon A, Chanudet V, Descloux S, Serça D. 2016. Low methane (CH4) emissions downstream of a monomictic subtropical hydroelectric reservoir. Biogeosciences 13:1919–32.CrossRefGoogle Scholar
  34. Dillon PJ, Molot L. 1997. Dissolved organic and inorganic carbon mass balances in central Ontario lakes. Biogeochemistry 36:29–42.CrossRefGoogle Scholar
  35. Downing JA, Cole JJ, Middelburg JJ, Striegl RG, Duarte CM, Kortelainen P, Prairie YT, Laube KA. 2008. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Glob Biogeochem Cycles 22.Google Scholar
  36. de Faria FAM, Jaramillo P, Sawakuchi HO, Richey JE, Barros N. 2015. Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs. Environ Res Lett 10:124019.CrossRefGoogle Scholar
  37. dos Santos MA, Damázio JM, Rogério JP, Amorim MA, Medeiros AM, Abreu JLS, Maceira MEP, Melo AC, Rosa LP. 2017. Estimates of GHG emissions by hydroelectric reservoirs: the Brazilian case. Energy 133:99–107.CrossRefGoogle Scholar
  38. Fearnside PM. 2006. Greenhouse gas emissions from hydroelectric dams: reply to Rosa and others. Climatic Change 75:103–9.CrossRefGoogle Scholar
  39. Fearnside PM. 2016. Greenhouse gas emissions from Brazil’s Amazonian hydroelectric dams. Environ Res Lett 11:11002.CrossRefGoogle Scholar
  40. Fearnside PM, Pueyo S. 2012. Greenhouse-gas emissions from tropical dams. Nat Clim Change 2:382–4.CrossRefGoogle Scholar
  41. Ferland ME, del Giorgio PA, Teodoru C, Prairie YT. 2012. Long-term C accumulation and total C stocks in boreal lakes in northern Québec. Glob Biogeochem Cycles 26:1–10.CrossRefGoogle Scholar
  42. Ferland ME, Prairie YT, Teodoru C, del Giorgio PA. 2014. Linking organic carbon sedimentation, burial efficiency, and long-term accumulation in boreal lakes. J Geophys Res Biogeosci 119:836–47.CrossRefGoogle Scholar
  43. Gagnon L, Bélanger C, Uchiyama Y. 2002. Life-cycle assessment of electricity generation options: the status of research in year 2001. Energy Policy 30:1267–78.CrossRefGoogle Scholar
  44. Gälman V, Rydberg J, de-Luna SS, Bindler R, Renberg I. 2008. Carbon and nitrogen loss rates during aging of lake sediment: changes over 27 years studied in varved lake sediment. Limnol Oceanogr 53:1076–82.CrossRefGoogle Scholar
  45. Giles J. 2006. Methane quashes green credentials of hydropower. Nature 444:524–5.CrossRefGoogle Scholar
  46. Grinham AA, Dunbabin MB, Gale DC, Udy JC. 2011. Quantification of ebullitive and diffusive methane release to atmosphere from a water storage. Atmos Environ 45:7166–73.CrossRefGoogle Scholar
  47. Grossart H-P, Frindte K, Dziallas C, Eckert W, Tang KW. 2011. Microbial methane production in oxygenated water column of an oligotrophic lake. Proc Nat Acad Sci USA 108:19657–61.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik L. 2010. Temperature-controlled organic carbon mineralization in lake sediments. Nature 466:478–81.CrossRefPubMedGoogle Scholar
  49. Guenet B, Danger M, Abbadie L, Lacroix G. 2010. Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91:2850–61.CrossRefPubMedGoogle Scholar
  50. Guérin F, Abril G. 2007. Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. J Geophys Res G: Biogeosci 112.Google Scholar
  51. Guérin F, Abril G, de Junet A, Bonnet MP. 2008. Anaerobic decomposition of tropical soils and plant material: implication for the CO2 and CH4 budget of the Petit Saut Reservoir. Appl Geochem 23:2272–83.CrossRefGoogle Scholar
  52. Guérin F, Abril G, Richard S, Burban B, Reynouard C, Seyler P, Delmas R. 2006. Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers. Geophys Res Lett 33:1–6.CrossRefGoogle Scholar
  53. Harrison JA, Deemer BR, Birchfield MK, O’Malley MT. 2017. reservoir water-level drawdowns accelerate and amplify methane emission. Environ Sci Technol 51:1267–77.CrossRefPubMedGoogle Scholar
  54. Hassink J. 1997. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191:77–87.CrossRefGoogle Scholar
  55. Hertwich EG. 2013. Addressing biogenic greenhouse gas emissions from hydropower in LCA. Environ Sci Technol 47:9604–11.CrossRefPubMedGoogle Scholar
  56. Holgerson MA, Raymond PA. 2016. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat Geosci pp 1–7.Google Scholar
  57. Hotchkiss ER, Hall RO Jr, Sponseller RA, Butman D, Klaminder J, Laudon H, Rosvall M, Karlsson J. 2015. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat Geosci 8:696–9.CrossRefGoogle Scholar
  58. IEA Hydropower. 2012. Guidelines for quantitative analysis of net GHG emissions from reservoirs–Volume 1: measurement programs and data analysis, Annex XII.Google Scholar
  59. IPCC, 2013. Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp,  https://doi.org/10.1017/CBO9781107415324.
  60. Kemenes A, Forsberg BR, Melack JM. 2007. Methane release below a tropical hydroelectric dam. Geophys Res Lett 34:1–5.CrossRefGoogle Scholar
  61. Kim Y, Ullah S, Roulet NT, Moore TR. 2015. Effect of inundation, oxygen and temperature on carbon mineralization in boreal ecosystems. Sci Total Environ 511:381–92.CrossRefPubMedGoogle Scholar
  62. Koehler B, Von Wachenfeldt E, Kothawala D, Tranvik LJ. 2012. Reactivity continuum of dissolved organic carbon decomposition in lake water. J Geophys Res: Biogeosci 117:1–14.CrossRefGoogle Scholar
  63. Lehner B, Liermann CR, Revenga C, Vörömsmarty C, Fekete B, Crouzet P, Döll P, Endejan M, Frenken K, Magome J, Nilsson C, Robertson JC, Rödel R, Sindorf N, Wisser D. 2011. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Frontiers Ecol Environ 9:494–502.CrossRefGoogle Scholar
  64. Li Z, Zhang Z, Lin C, Chen Y, Wen A, Fang F. 2016. Soil-air greenhouse gas fluxes influenced by farming practices in reservoir drawdown area: a case at the Three Gorges Reservoir in China. J Environ Manag 181:64–73.CrossRefGoogle Scholar
  65. Linn DM, Doran JW. 1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1267–72.CrossRefGoogle Scholar
  66. Maavara T, Lauerwald R, Regnier P, Van Cappellen P. 2017. Global perturbation of organic carbon cycling by river damming. Nat Commun 8:1–10.CrossRefGoogle Scholar
  67. Maeck A, DelSontro T, McGinnis DF, Fischer H, Flury S, Schmidt M, Fietzek P, Lorke A. 2013. Sediment trapping by dams creates methane emission hot spots. Environ Sci Technol 47:8130–7.CrossRefPubMedGoogle Scholar
  68. McGinnis D, Greinert J, Artemov Y, Beaubien S, Wüest A. 2006. Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere. J Geophys Res 111:C09007.CrossRefGoogle Scholar
  69. McGinnis DF, Kirillin G, Tang KW, Flury S, Bodmer P, Engelhardt C, Casper P, Grossart HP. 2015. Enhancing surface methane fluxes from an oligotrophic lake: exploring the microbubble hypothesis. Environ Sci Technol 49:873–80.CrossRefPubMedGoogle Scholar
  70. Mendonça R, Barros N, Vidal LO, Pacheco F, Kosten S, Roland F. 2012. Greenhouse gas emissions from hydroelectric reservoirs: what knowledge do we have and what is lacking Greenhouse gases-emission, measurement and management pp 55–78.Google Scholar
  71. Mendonça R, Kosten S, Sobek S, Cole JJ, Bastos AC, Albuquerque AL, Cardoso SJ, Roland F. 2014. Carbon sequestration in a large hydroelectric reservoir: an integrative seismic approach. Ecosystems.Google Scholar
  72. Musenze RS, Grinham A, Werner U, Gale D, Sturm K, Udy J, Yuan Z. 2014. Assessing the spatial and temporal variability of diffusive methane and nitrous oxide emissions from subtropical freshwater reservoirs. Environ Sci Technol 48:14499–507.CrossRefPubMedGoogle Scholar
  73. Oelbermann M, Schiff SL. 2008. Quantifying carbon dioxide and methane emissions and carbon dynamics from flooded boreal forest soil. J Environ Q 37:2037–47.CrossRefGoogle Scholar
  74. Ostrovsky I, McGinnis DF, Lapidus L, Eckert W. 2008. Quantifying gas ebullition with echosounder: the role of methane transport by bubbles in a medium-sized lake. Limnol Oceanogr 6:105–18.CrossRefGoogle Scholar
  75. Pace ML, Prairie YT. 2005. Respiration in lakes. Resp Aqu Ecosyst 1:103–22.CrossRefGoogle Scholar
  76. Prairie YT, del Giorgio PA. 2013. A new pathway of freshwater methane emissions and the putative importance of microbubbles. Inland Waters 3:311–20.CrossRefGoogle Scholar
  77. Prairie YT, Alm J, Harby A, Mercier-Blais S, Nahas R. 2017. The GHG Reservoir Tool (G-res) Technical documentation, UNESCO/IHA research project on the GHG status of freshwater reservoirs. Joint publication of the UNESCO Chair in Global Environmental Change and the International Hydropower Association. p. 76.Google Scholar
  78. Rasilo T, Prairie YT, del Giorgio PA. 2014. Large-scale patterns in summer diffusive CH 4fluxes across boreal lakes, and contribution to diffusive C emissions. Glob Change Biol 21:1124–39.CrossRefGoogle Scholar
  79. Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P. 2013. Global carbon dioxide emissions from inland waters. Nature 503:355–9.CrossRefPubMedGoogle Scholar
  80. Rosa LP, dos Santos MA, Matvienko B, Sikar E. 2006. Scientific errors in the fearnside comments on greenhouse gas emissions (GHG) from hydroelectric dams and response to his political claiming. Clim Change 75:91–102.CrossRefGoogle Scholar
  81. Rudd JWM, Hecky RE, Harris R, Kelly CA. 1993. Are hydroelectric reservoirs significant sources of greenhouse gases? Ambio 22:246–8.Google Scholar
  82. Serça D, Deshmukh C, Pighini S, Oudone P, Vongkhamsao A, Guédant P, Rode W, Godon A, Chanudet V, Descloux S, Guérin F. 2016. Nam Theun 2 Reservoir four years after commissioning: significance of drawdown methane emissions and other pathways. Hydroécologie Appliquée 19:119–46.CrossRefGoogle Scholar
  83. Sikar E, Matvienko B, Santos MA, Rosa L, Silva MB, dos Santos E, Rocha CHED, Bentes AP. 2009. Tropical reservoirs are bigger carbon sinks than soils. Verh. Internat. Verein. Limnol. 30:838–40.Google Scholar
  84. Sobek S, Tranvik LJ, Prairie YT, Kortelainen P, Cole JJ. 2007. Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnol Oceanogr 52:1208–19.CrossRefGoogle Scholar
  85. Sobek S, Durisch-Kaiser E, Zurbrügg R, Wongfun N, Wessels M, Pasche N, Wehrli B. 2009. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnol Oceanogr 54:2243–54.CrossRefGoogle Scholar
  86. Sobek S, DeSontro T, Wongfun N, Wehrli B. 2012. Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir. Geophys Res Lett 39:2–5.CrossRefGoogle Scholar
  87. St. Louis VL, Kelly CA, Duchemin E, Rudd JWM, Rosenberg DM. 2000. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. BioScience 50:766–75.CrossRefGoogle Scholar
  88. Teodoru CR, Bastien J, Bonneville MC, del Giorgio PA, Demarty M, Garneau M, Hélie JF, Pelletier L, Prairie YT, Roulet NT, Strachan IB, Tremblay A. 2012. The net carbon footprint of a newly created boreal hydroelectric reservoir. Glob Biogeochem Cycles 26:1–14.CrossRefGoogle Scholar
  89. Teranes JL, Bernasconi SM. 2000. The record of nitrate utilization and productivity limitation provided by δ15 N values in lake organic matter—A study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnol Oceanogr 45:801–13.CrossRefGoogle Scholar
  90. Thérien N, Morrison K. 2005. Production of GHG from the decomposition of in vitro inundated phytomass and soil. In: Tremblay, Varfalvy, Roehm and Garneau, Eds, Chapter 13, GHG emissions from boreal reservoirs and natural aquatic ecosystems. Greenhouse gas emissions—fluxes and processes pp 315–338.Google Scholar
  91. Tranvik L, Downing J, Cotner J, Loiselle S, Striegl R, Ballatore T, Dillon P, Finlay K, Fortino K, Knoll L, Kortelainen P, Kutser T, Larsen S, Laurion I, Leech D, McCallister S, McKnight D, Melack J, Overholt E, Porter J, Sobek S, Tremblay A, Vanni M, Verschoor A, Wachenfeldt E, Weyhenmeyer G. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–314.CrossRefGoogle Scholar
  92. Tremblay A, Therrien J, Hamlin B, Wichmann E, Ledrew LJ. 2005a. Chap. 8 GHG Emissions from Boreal Reservoirs and Natural Aquatic Ecosystems. In: Tremblay, Varfalvy, Roehm, Garneau, Eds, GHG emissions from boreal reservoirs and natural aquatic ecosystems. Greenhouse gas emissions—fluxes and processes pp 209–232.Google Scholar
  93. Tremblay A, Valfalvy L, Roehm C and Garneau M. 2005b. Synthesis, In: Tremblay, Varfalvy, Roehm, Garneau, Eds, GHG emissions from boreal reservoirs and natural aquatic ecosystems. Greenhouse gas emissions—fluxes and processes. pp 637–659.Google Scholar
  94. Vachon D, Solomon CT, del Giorgio PA. 2016a. Reconstructing the seasonal dynamics and relative contribution of the major processes sustaining CO2 emissions in northern lakes. Limnol Oceanogr 62:706–22.  https://doi.org/10.1002/lno.10454.CrossRefGoogle Scholar
  95. Vachon D, Prairie YT, Guillemette F, del Giorgio PA. 2016b. Modeling allochthonous dissolved organic carbon mineralization under variable hydrologic regimes in Boreal Lakes. Ecosystems 53:1–15.Google Scholar
  96. Vörösmarty CJ, Meybeck M, Fekete B, Sharma K, Green P, Syvitski JPM. 2003. Anthropogenic sediment retention: major global impact from registered river impoundments. Glob Planet Change 39:169–90.CrossRefGoogle Scholar
  97. Wilkinson J, Maeck A, Alshboul Z, Lorke A. 2015. Continuous seasonal river ebullition measurements linked to sediment methane formation. Environ Sci Technol 49:13121–9.CrossRefPubMedGoogle Scholar
  98. Yang L, Lu F, Wang X, Duan X, Song W, Sun B, Chen S, Zhang Q, Hou P, Zheng F, Zhang Y, Zhou X, Zhou Y, Ouyang Z. 2012. Surface methane emissions from different land use types during various water levels in three major drawdown areas of the three gorges reservoir. J Geophys Res 117:D10109.  https://doi.org/10.1029/2011JD017362.Google Scholar
  99. Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K. 2014. A global boom in hydropower dam construction. Aqua Sci 77:161–70.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Yves T. Prairie
    • 1
  • Jukka Alm
    • 2
  • Jake Beaulieu
    • 3
  • Nathan Barros
    • 4
  • Tom Battin
    • 5
  • Jonathan Cole
    • 6
  • Paul del Giorgio
    • 7
  • Tonya DelSontro
    • 7
  • Frédéric Guérin
    • 8
  • Atle Harby
    • 9
  • John Harrison
    • 10
  • Sara Mercier-Blais
    • 1
  • Dominique Serça
    • 11
  • Sebastian Sobek
    • 12
  • Dominic Vachon
    • 13
  1. 1.UNESCO Chair in Global Environmental ChangeUniversité du Québec à MontréalMontréalCanada
  2. 2.Natural Resources Institute FinlandHelsinkiFinland
  3. 3.United States Environmental Protection AgencyCincinnatiUSA
  4. 4.Federal University of Juiz de ForaJuiz de ForaBrazil
  5. 5.École Polytechnique Fédérale de LausanneLausanneSwitzerland
  6. 6.Cary Institute of Ecosystem StudiesMillbrookUSA
  7. 7.Université du Québec à MontréalMontréalCanada
  8. 8.Géosciences Environnement Toulouse, CNRS, IRDUniversité Paul-SabatierToulouseFrance
  9. 9.SINTEF Energy ResearchTrondheimNorway
  10. 10.School of the EnvironmentWashington State UniversityVancouverUSA
  11. 11.Laboratoire d’AérologieObservatoire Midi-PyrénéesToulouseFrance
  12. 12.Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
  13. 13.Institute F.-A. Forel, Department of SciencesUniversity of GenevaGenevaSwitzerland

Personalised recommendations