, Volume 21, Issue 5, pp 868–885 | Cite as

Will CO2 Emissions from Drained Tropical Peatlands Decline Over Time? Links Between Soil Organic Matter Quality, Nutrients, and C Mineralization Rates

  • Erin SwailsEmail author
  • Dyanna Jaye
  • Louis Verchot
  • Kristell Hergoualc’h
  • Michael Schirrmann
  • Nils Borchard
  • Novi Wahyuni
  • Deborah Lawrence


Conversion, drainage, and cultivation of tropical peatlands can change soil conditions, shifting the C balance of these systems, which is important for the global C cycle. We examined the effect of soil organic matter (SOM) quality and nutrients on CO2 production from peat decomposition using laboratory incubations of Indonesian peat soils from undrained forest in Kalimantan and drained oil palm plantations in Kalimantan and Sumatra. We found that oil palm soils had higher C/N and lower SOM quality than forest soils. Higher substrate quality and nutrient availability, particularly lower ratios of aromatic/aliphatic carbon and C/N, rather than total SOM or carbon, explained the higher rate of CO2 production by forest soils (10.80 ± 0.23 µg CO2–C g C h−1) compared to oil palm soils (5.34 ± 0.26 µg CO2–C g C h−1) from Kalimantan. These factors also explained lower rates in Sumatran oil palm (3.90 ± 0.25 µg CO2–C g C h−1). We amended peat with nitrogen (N), phosphorus (P), and glucose to further investigate observed substrate and nutrient constraints across the range of observed peat quality. Available N limited CO2 production, in unamended and amended soils. P addition raised CO2 production when substrate quality was high and initial P state was low. Glucose addition raised CO2 production in the presence of added N and P. Our results suggest that decline in SOM quality and nutrients associated with conversion may decrease substrate-driven rates of CO2 production from peat decomposition over time.


tropical peat swamp forest oil palm plantation land-use change incubation microbial respiration Indonesia 


  1. Arnason J, Lambert J, Gale J. 1984. Mineral cycling in a tropical palm forest. Plant Soil 79:211–25.CrossRefGoogle Scholar
  2. Asner G, Martin R. 2008. Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels. Remote Sens Environ 112:3958–70.CrossRefGoogle Scholar
  3. Balzotti C, Asner G, Taylor P, Cleveland C, Cole R, Martin R, Nasto M, Osborne B, Porder S, Townsend A. 2016. Environmental controls on canopy foliar nitrogen distributions in a Neotropical lowland forest. Ecol Appl 26:2449–62.CrossRefPubMedGoogle Scholar
  4. Berg B, Matzner E. 1997. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5:1–25.CrossRefGoogle Scholar
  5. Blagodatskaya EV, Blagodatsky SA, Anderson TH, Kuzyakov Y. 2007. Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Appl Soil Ecol 37:95–105.CrossRefGoogle Scholar
  6. Badan Pusat Statistik Indonesia. 2015. Tree Crop Estate Statistics of Indonesia.Google Scholar
  7. Carlson KM, Curran LM, Asner GP, Pittman AM, Trigg SN, Adeney JM. 2012. Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nat Clim Change 3:283–7.CrossRefGoogle Scholar
  8. Certini G. 2005. Effects of fire on properties of forest soils: a review. Oecologia 143:1–10.CrossRefPubMedGoogle Scholar
  9. Cleveland C, Townsend A, Schmidt S. 2002. Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies. Ecosystems 5:680–91.CrossRefGoogle Scholar
  10. Cleveland C, Liptzin D. 2007. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–52.CrossRefGoogle Scholar
  11. Comeau LP, Hergoualc’h K, Hartill J, Smith J, Verchot LV, Peak D, Salim MA. 2016. How do the heterotrophic and the total soil respiration of an oil palm plantation on peat respond to nitrogen fertilizer application? Geoderma 268:41–51.CrossRefGoogle Scholar
  12. Couwenberg J, Dommain R, Joosten H. 2010. Greenhouse gas fluxes from tropical peatlands in Southeast Asia. Glob Change Biol 16:1715–32.CrossRefGoogle Scholar
  13. Craine JM, Morrow C, Fierer N. 2007. Microbial nitrogen limitation increases decomposition. Ecology 88:2105–13.CrossRefPubMedGoogle Scholar
  14. Darmosarkoro W, Winarna ES. 2003. Teknologi pemupukan tanaman kelapa sawit. Dalam Lahan dan Pemupukan Kelapa Sawit. Medan: Pusat Penelitian Kelapa Sawit. pp 113–34.Google Scholar
  15. de Neiff A, Neiff J, Casco S. 2006. Leaf litter decomposition in three wetland types of the Paraná River floodplain. Wetlands 26:558–66.CrossRefGoogle Scholar
  16. Dommain R, Couwenberg J, Joosten H. 2011. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat Sci Rev 30:999–1010.CrossRefGoogle Scholar
  17. Drösler M, Verchot LV, Freibauer A, and others. 2014. Chapter 2: drained inland organic soils. In: Hiraishi T, Krug T, Tanabe K, Srivastava N, Jamsranjav B, Fukuda M, Troxler T, Eds. 2013 Supplement to the 2006 guidelines for national greenhouse gas inventories: wetlands. Switzerland: IPCC.Google Scholar
  18. Eilers PHC, Boelens HFM. 2005. Baseline correction with asymmetric least squares smoothing. Leiden University Medical Centre Report.Google Scholar
  19. Ernakovich J. 2014. The vulnerability of permafrost carbon to decomposition after thaw: exploring chemical and microbial controls. PhD Thesis. Colorado State University, Fort Collins.Google Scholar
  20. Gandois L, Cobb AR, Hei C, Lim LBL, Salim A, Harvey CF. 2013. Impact of deforestation on solid and dissolved organic matter characteristics of tropical peat forests: implications for carbon release. Biogeochemistry 114:183–99.CrossRefGoogle Scholar
  21. Gholizadeh A, Borůvka L, Saberioon M, Vašát R. 2013. Visible, near-infrared, and mid-infrared spectroscopy applications for soil assessment with emphasis on soil organic matter content and quality: state-of-the-art and key issues. Appl Spectrosc 67:1349–62.CrossRefPubMedGoogle Scholar
  22. Gonzalez-Perez JA, Gonzalez-Vila FJ, Almendros G, Knicker H. 2004. The effect of fire on soil organic matter—a review. Environ Int 30:855–70.CrossRefPubMedGoogle Scholar
  23. Goodrick I, Nelson PN, Nake S, Webb M, Bird M, Huth N. 2016. Tree-scale spatial variability of soil carbon cycling in a mature oil palm plantation. Soil Res 54:397–406.CrossRefGoogle Scholar
  24. Gumbricht T, Roman-Cuesta RM, Verchot L, Herold M, Wittmann F, Householder E, Herold, N, Murdiyarso D. 2017. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob Change Biol 23:3581–99.CrossRefGoogle Scholar
  25. Haberhauer G, Rafferty B, Strebl F, Gerzabek MH. 1998. Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy. Geoderma 83:331–42.CrossRefGoogle Scholar
  26. Haynes RJ. 1986. The decomposition process: mineralization, immobilization, humus formation, and degradation. In: Haynes RJ, Ed. Mineral nitrogen in the plant–soil system. Orlando, FL: Academic Press. p 52–126.Google Scholar
  27. Heller C, Ellerbrock RH, Roßkopf N, Klingenfuß C, Zeitz J. 2015. Soil organic matter characterization of temperate peatland soil with FTIR-spectroscopy: effects of mire type and drainage intensity. Eur J Soil Sci 66:847–58.CrossRefGoogle Scholar
  28. Hergoualc’h K, Verchot L. 2014. Greenhouse gas emission factors for land use and land-use change in Southeast Asian peatlands. Mitig Adapt Strateg Glob Change 19:789–807.CrossRefGoogle Scholar
  29. Hirano T, Segah H, Harada T, Limin S, Junes T, Hirata R, Osaki M. 2007. Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia. Glob Change Ecol 13:412–25.CrossRefGoogle Scholar
  30. Hirano T, Jauhiainen J, Inoue T, Takahashi H. 2009. Controls on the carbon balance of tropical peatlands. Ecosystems 12:873–87.CrossRefGoogle Scholar
  31. Hirano T, Segah H, Kusin K, Limin S, Takahashi H, Osaki M. 2012. Effects of disturbances on the carbon balance of tropical peat swamp forests. Glob Change Biol 18:3410–22.CrossRefGoogle Scholar
  32. Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wosten H, Jauhiainen J. 2010. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7:1505–14.CrossRefGoogle Scholar
  33. Hooijer A, Page S, Jauhiainen J, Lee WA, Lu XX, Idris A, Anshari G. 2012. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9:1053–71.CrossRefGoogle Scholar
  34. Hopkins DW, Sparrow AD, Elberling B, Gregorich EG, Novis PM, Greenfield LG, Tilston EL. 2006. Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biol Biochem 38:3130–40.CrossRefGoogle Scholar
  35. Hobbie SE, Vitousek PM. 2000. Nutrient regulation of decomposition in Hawaiian montane forests: do the same nutrients limit production and decomposition? Ecology 81:1867–77.CrossRefGoogle Scholar
  36. Hoyos-Santillan J, Lomax BH, Large D, Turner BL, Boom A, Lopez OR, Sjögersten S. 2016. Quality not quantity: organic matter composition controls of CO2 and CH4 fluxes in neotropical peat profiles. Soil Biol Biochem 103:86–96.CrossRefGoogle Scholar
  37. Humphrey WD, Pluth DJ. 1996. Net nitrogen mineralization in natural and drained fen peatlands in Alberta, Canada. Soil Sci Soc Am J 60:932–40.CrossRefGoogle Scholar
  38. Inubushi K, Furukawa Y, Hadi A, Purnomo E, Tsuruta H. 2003. Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan. Chemosphere 52:603–8.CrossRefPubMedGoogle Scholar
  39. Ismawi SM, Gandaseca S, Ahmed OH. 2012. Effects of deforestation on soil major macro-nutrient and other selected chemical properties of secondary tropical peat swamp forest. Int J Phys Sci 7:2225–8.CrossRefGoogle Scholar
  40. Jauhiainen J, Takahashi H, Heikkinen JEP, Martikainen PJ, Vasander H. 2005. Carbon fluxes from a tropical peat swamp forest floor. Glob Change Biol 11:1788–97.CrossRefGoogle Scholar
  41. Jauhiainen J, Limin S, Silvennoinen H, Vasander H. 2008. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. Ecology 89:3503–14.CrossRefPubMedGoogle Scholar
  42. Jauhiainen J, Kerojoki O, Silvennoinen H, Limin S, Vasandar H. 2014. Heterotrophic respiration in drained tropical peat is greatly affected by temperature: a passive ecosystem cooling experiment. Environ Res Lett 9:105013.CrossRefGoogle Scholar
  43. Jauhiainen J, Silvennoinen H, Könönen M, Limin S, Vasander H. 2016. Management driven changes in carbon mineralization dynamics of tropical peat. Biogeochemistry 129:115–32.CrossRefGoogle Scholar
  44. Juszczak R, Augustin J. 2013. Exchange of the greenhouse gases methane and nitrous oxide between the atmosphere and a temperate peatland in central Europe. Wetlands 33:895–907.CrossRefGoogle Scholar
  45. Khalid H, Zin ZZ, Anderson JM. 1999. Quantification of oil palm biomass and nutrient value in a mature plantation. II. Below-ground biomass. J Oil Palm Res 11:63–71.Google Scholar
  46. Kimura S, Melling L, Goh KJ. 2012. Influence of soil aggregate size on greenhouse gas emission and uptake rate from tropical peat soil in forest and different oil palm development years. Geoderma 185:1–5.CrossRefGoogle Scholar
  47. Koh LP, Miettinen J, Liew SC, Ghazoul J. 2011. Remotely sensed evidence of tropical peatland conversion to oil palm. Proc Natl Acad Sci USA 108:5127–32.CrossRefPubMedGoogle Scholar
  48. Könönen M, Jauhiainen J, Laiho R, Kusin K, Vasandar H. 2015. Physical and chemical properties of tropical peat under stabilised land uses. Mires Peat 16:1–13.Google Scholar
  49. Könönen M, Jauhiainen J, Laiho R, Spetz P, Kusin K, Limin S, Vasander H. 2016. Land use increases the recalcitrance of tropical peat. Wetl Ecol Manag 24:717–31.CrossRefGoogle Scholar
  50. Kroer N. 1993. Bacterial growth efficiency on natural dissolved organic matter. Limnol Oceonogr 38:1282–90.CrossRefGoogle Scholar
  51. Krüger JP, Leifeld J, Glatzel S, Szidat S, Alewell C. 2015. Biogeochemical indicators of peatland degradation-a case study of a temperate bog in northern Germany. Biogeosciences 12:2861.CrossRefGoogle Scholar
  52. Lim KH, Lim SS, Parish F, Suharto R, Eds. 2012. RSPO manual on best management practices for existing oil palm cultivation on peat. Kuala Lumpur: Roundtable on Sustainable Palm Oil.Google Scholar
  53. MacLean D, Wein R. 1978. Weight loss and nutrient changes in decomposing litter and forest floor material in New Brunswick forest stands. Can J Bot 56:2730–49.CrossRefGoogle Scholar
  54. Marwanto S, Agus F. 2014. Is CO2 flux from oil palm plantations on peatland controlled by soil moisture and/or soil and air temperatures? Mitig Adapt Strateg Glob Change 19:809–19.CrossRefGoogle Scholar
  55. Melling L, Hatano R, Goh KJ. 2005. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus 57:1–11.CrossRefGoogle Scholar
  56. Melling L, Hatano R, Goh KJ. 2007. Nitrous oxide emissions from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Sci Plant Nutr 53:792–805.CrossRefGoogle Scholar
  57. Melling L, Tan C, Goh KJ, Hatano R. 2013. Soil microbial and root respirations from three ecosystems in tropical peatland of Sarawak, Malaysia. J Palm Res 1:44–57.Google Scholar
  58. Miettinen J, Hooijer A, Shi C, Tollenaar D, Vernimmen R, Liew SC, Malins C, Page SE. 2012. Extent of industrial plantations on Southeast Asian peatlands in 2010 with analysis of historical expansion and future projections. Glob Change Biol Bioenergy 4:908–18.CrossRefGoogle Scholar
  59. Minkkinen K, Lame J, Shurpali NJ, Mäkiranta P, Alm J, Penttilä T. 2007. Heterotrophic soil respiration in forestry-drained peatlands. Boreal Environ Res 12:115–26.Google Scholar
  60. Moore JC, Boone RB, Koyama A, Holfelder K. 2014. Enzymatic and detrital influences on the structure, function, and dynamics of spatially-explicit model ecosystems. Biogeochemistry 117:205–27.CrossRefGoogle Scholar
  61. Moorhead DL, Sinsabaugh RL. 2006. A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–74.CrossRefGoogle Scholar
  62. Novita N. 2016. Carbon stocks and soil greenhouse gas emissions associated with forest conversion to oil palm plantations in Tanjung Puting tropical peatlands, Indonesia. PhD dissertation. Oregon State University.Google Scholar
  63. Obidzinski K, Andriani R, Komarudin H, Andrianto A. 2012. Environmental and social impacts of oil palm plantations and their implications for biofuel production in Indonesia. Ecol Soc 17:481–99.CrossRefGoogle Scholar
  64. Oktarita S, Hergoualc’h K, Anwar S, Verchot L. 2017. Sustantial N2O emissions from peat decomposition and N fertilization in an oil palm plantation exacerbated by hotspots. Environ Res Lett 12:104007.CrossRefGoogle Scholar
  65. Page SE, Rieley JO, Shotyk OW, Weiss D. 1999. Interdependence of peat and vegetation in a tropical peat swamp forest. Philos Trans R Soc Lond 354:1885–97.CrossRefGoogle Scholar
  66. Page SE, Rieley JO, Banks CF. 2011. Global and regional importance of the tropical peatland carbon pool. Glob Change Biol 17:798–818.CrossRefGoogle Scholar
  67. Pan Y, Birdsey RA, Fand J et al. 2011a. A large and persistent carbon sink in the world’s forests. Science 333:988–93.CrossRefPubMedGoogle Scholar
  68. Pan Y, Chen JM, Birdsey R, McCullough K, He L, Deng F. 2011b. Age structure and disturbance legacy of North American forests. Biogeosciences 8:715–32.CrossRefGoogle Scholar
  69. Pardon L, Huth N, Nelson P, Banabas M, Gabrielle B, Bessou C. 2017. Yield and nitrogen losses in oil palm plantations: main drivers and management trade-offs determined using simulation. Field Crops Res 210:20–32.CrossRefGoogle Scholar
  70. Ponette-González AG, Curran LM, Pittman AM, Carlson KM, Steele BG, Ratnasari D, Weather M, Weathers KC. 2016. Biomass burning drives atmospheric nutrient redistribution within forested peatlands in Borneo. Environ Res Lett 11:085003.CrossRefGoogle Scholar
  71. Prescott CE. 1995. Does nitrogen availability control rates of litter decomposition in forests? Plant Soil 168–169:83–8.CrossRefGoogle Scholar
  72. Reiley J, Page S. 2008. The science of tropical peatlands and the Central Kalimantan Peatland Development Area. Technical Review Number 1, Master Plan for the Rehabilitation of the Ex-Mega Rice Project Area in Central Kalimantan, Government of Indonesia.Google Scholar
  73. Rein G, Cleaver N, Ashton C, Pironi P, Torero JL. 2008. The severity of smouldering peat fires and damage to the forest soil. Catena 74:304–9.CrossRefGoogle Scholar
  74. Rodionov A, Pätzold S, Welp G, Pallares RC, Damerow L, Amelung W. 2014. Sensing of soil organic carbon using visible and near-infrared spectroscopy at variable moisture and surface roughness. Soil Sci Soc Am J 78:949–57.CrossRefGoogle Scholar
  75. Savitzky A, Golay MJE. 1964. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–39.CrossRefGoogle Scholar
  76. Santín C, Doerr SH. 2016. Fire effects on soils: the human dimension. Philos Trans R Soc B 371:20150171.CrossRefGoogle Scholar
  77. Scanlon D, Moore T. 2000. Carbon dioxide production from peatland soil profiles: the influence of temperature, oxic/anoxic conditions and substrate. Soil Sci 165:153–60.CrossRefGoogle Scholar
  78. Schimel JP, Weintraub M. 2003. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–63.CrossRefGoogle Scholar
  79. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Koegel-Knaber I. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:49–56.CrossRefPubMedGoogle Scholar
  80. Schrier-Uijl AP, Veraart AJ, Leffelaar PA, Berendse F, Veenendaal EM. 2011. Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands. Biogeochemistry 102:265–79.CrossRefGoogle Scholar
  81. Shenk JS, Workman JJ, Westerhaus MO. 1992. Application of NIR spectroscopy to agricultural products. In: Burns DA, Ciurczak EW, Eds. Handbook of near-infrared analysis, Vol. 13. New York: Marcel Dekker, Inc. p 383–431.Google Scholar
  82. Shimada S, Takahashi H, Haraguchi A, Kaneko M. 2001. The carbon content characteristics of tropical peats in Central Kalimantan, Indonesia: estimating their spatial variability in density. Biogeochemistry 53:249–67.CrossRefGoogle Scholar
  83. Singh N, Abiven S, Torn MS, Schmidt MWI. 2012. Fire derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9:2847–57.CrossRefGoogle Scholar
  84. Sjögersten S, Caul S, Daniell TJ, Jurd APS, O’Sullivan OS, Stapleton CS, Titman JJ. 2016. Organic matter chemistry controls greenhouse gas emissions from permafrost peatlands. Soil Biol Biochem 98:42–53.CrossRefGoogle Scholar
  85. Stenberg B, Viscarra Rossel RA, Mouazen AM, Wetterlind J. 2010. Visible and near infrared spectroscopy in soil science. In: Sparks D, Ed. Advances in agronomy, Vol. 107. Burlington: Academic Press. p 163–215.Google Scholar
  86. Terhoeven-Urselmans T, Michel K, Helfrich M, Flessa H, Ludwig B. 2006. Near-infrared spectroscopy can predict the composition of organic matter in soil and litter. J Plant Nutr Soil Sci 169:168–74.CrossRefGoogle Scholar
  87. Takakai F, Morishita T, Hashidoko Y, Darung U, Kuramochi K, Dohong S, Limin S, Hatano R. 2006. Effects of agricultural land-use change and forest fire on N2O emission from tropical peatlands, Central Kalimantan, Indonesia. Soil Sci Plant Nutr 52:662–74.CrossRefGoogle Scholar
  88. Tripathi B, Edwards D, Mendes L, Kim M, Dong K, Kim H, Adams J. 2016. The impact of tropical forest logging and oil palm agriculture on the soil microbiome. Mol Ecol 25:2244–57.CrossRefPubMedGoogle Scholar
  89. Turetsky MR, Wieder RK, Williams CJ, Vitt DH. 2000. Organic matter accumulation, peat chemistry, and permafrost melting in peatlands of boreal Alberta. Ecoscience 7:115–22.CrossRefGoogle Scholar
  90. van Lent J, Hergoualc’h K, Verchot LV. 2015. Reviews and syntheses: soil N2O and NO emissions from land use and land use change in the tropics and subtropics: a meta-analysis. Biogeosciences 12:677–8.Google Scholar
  91. von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H. 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–45.CrossRefGoogle Scholar
  92. Warren MW, Kauffman JB, Murdiyarso D, Anshari G, Hergoalc’h K, Kurnianto S, Purbopuspito J, Gusmayanti E, Afifudin M, Rahajoe J, Alhamd L, Limin S, Iswandi A. 2012. A cost-efficient method to assess carbon stocks in tropical peat soil. Biogeosciences 9:4477–85.CrossRefGoogle Scholar
  93. Wight PJ, Ashworth AJ, Allen FL. 2016. Organic substrate, clay type, texture, and water influence on NIR carbon measurements. Geoderma 261:36–43.CrossRefGoogle Scholar
  94. Wösten JHM, Ismail AB, Van Wijk ALM. 1997. Peat subsidence and its practical implications: a case study in Malaysia. Geoderma 78:25–36.CrossRefGoogle Scholar
  95. Workman J, Weyer L. 2008. Practical guide to interpretive near-infrared spectroscopy. Boca Raton: CRC Press.Google Scholar
  96. Wright EL, Black CR, Cheesman AW, Drage T, Large T, Turner BL, Sjögersten S. 2011. Contribution of subsurface peat to CO2 and CH4 fluxes in a neotropical peatland. Glob Change Biol 17:2867–81.CrossRefGoogle Scholar
  97. Wust RAJ, Bustin RM. 2004. Late Pleistocene and Holocene development of the interior peat-accumulating basin of tropical Tasek Bera, Peninsular Malaysia. Palaeogeogr Palaeoclimatol Palaeoecol 211:241–70.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Erin Swails
    • 1
    Email author
  • Dyanna Jaye
    • 1
  • Louis Verchot
    • 2
  • Kristell Hergoualc’h
    • 3
  • Michael Schirrmann
    • 4
  • Nils Borchard
    • 3
    • 5
  • Novi Wahyuni
    • 3
  • Deborah Lawrence
    • 1
  1. 1.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  2. 2.International Center for Tropical AgricultureCaliColombia
  3. 3.Center for International Forestry ResearchBogorIndonesia
  4. 4.Leibniz Institute for Agricultural Engineering and BioeconomyPotsdamGermany
  5. 5.Institute of Geography, Soil Science/Soil EcologyRuhr-University BochumBochumGermany

Personalised recommendations