, Volume 21, Issue 4, pp 583–599 | Cite as

Productivity and Temperature as Drivers of Seasonal and Spatial Variations of Dissolved Methane in the Southern Bight of the North Sea

  • Alberto V. BorgesEmail author
  • Gaëlle Speeckaert
  • Willy Champenois
  • Mary I. Scranton
  • Nathalie Gypens


Dissolved CH4 concentrations in the Belgian coastal zone (North Sea) ranged between 670 nmol l−1 nearshore and 4 nmol l−1 offshore. Spatial variations of CH4 were related to sediment organic matter (OM) content and gassy sediments. In nearshore stations with fine sand or muddy sediments, the CH4 seasonal cycle followed water temperature, suggesting methanogenesis control by temperature in these OM-rich sediments. In offshore stations with permeable sediments, the CH4 seasonal cycle showed a yearly peak following the chlorophyll-a spring peak, suggesting that in these OM-poor sediments, methanogenesis depended on freshly produced OM delivery. This does not exclude the possibility that some CH4 might originate from dimethylsulfide (DMS) or dimethylsulfoniopropionate (DMSP) or methylphosphonate transformations in the most offshore stations. Yet, the average seasonal CH4 cycle was unrelated to those of DMS(P), very abundant during the Phaeocystis bloom. The annual average CH4 emission was 126 mmol m−2 y−1 in the most nearshore stations (~4 km from the coast) and 28 mmol m−2 y−1 in the most offshore stations (~23 km from the coast), 1260–280 times higher than the open ocean average value (0.1 mmol m−2 y−1). The strong control of CH4 by sediment OM content and by temperature suggests that marine coastal CH4 emissions, in particular in shallow areas, should respond to future eutrophication and warming of climate. This is supported by the comparison of CH4 concentrations at five stations obtained in March 1990 and 2016, showing a decreasing trend consistent with alleviation of eutrophication in the area.


methane North Sea sediments eutrophication dimethylsulfide dimethylsulfoniopropionate 



We are grateful to the crew of the RV Simon Stevin for assistance during the cruises, to André Cattrijsse and Jonas Mortelmans (VLIZ) for organizing the schedule of cruises, to the Royal Netherlands Institute of Sea Research (Yerseke) and the crew of the RV Luctor for sampling at station WS1, to Bavo De Witte (Instituut voor Landbouw-en Visserijonderzoek-ILVO) for providing a data set of sediment characteristics that allowed a preliminary data analysis, to Thibault Lambert for producing Figure 1, to Marc-Vincent Commarieu, Colin Royer and Adriana Anzil for help with sampling and laboratory analysis, Ruth Lagring (Belgian Marine Data Centre) for help in data mining and two anonymous reviewers for stimulating comments on the previous version of the manuscript. CTD data were provided by VLIZ and acquired in the frame of LifeWatch. This is a contribution to Belgian Science Policy (BELSPO) project 4DEMON (4 decades of Belgian marine monitoring, uplifting historical data to today’s needs, BR/121/A3/4DEMON). The GCs were acquired with funds from the Fonds National de la Recherche Scientifique (FNRS) (2.4.598.07, 2.4.637.10). NG received financial support from the Fonds David et Alice Van Buuren. GS has a Ph.D. Grant from the FRIA (Fund for Research Training in Industry and Agriculture, FNRS). AVB is a senior research associate at the FNRS.

Supplementary material

10021_2017_171_MOESM1_ESM.xlsx (24 kb)
Supplementary material 1 (XLSX 24 kb)


  1. Althoff F, Benzing K, Comba P, McRoberts C, Boyd DR, Greiner S, Keppler F. 2014. Abiotic methanogenesis from organosulfur compounds under ambient conditions. Nat Commun 5:4205. doi: 10.1038/ncomms5205.PubMedCrossRefGoogle Scholar
  2. Bange HW. 2006. Nitrous oxide and methane in European coastal waters. Estuar Coast Shelf Sci 70:361–74.CrossRefGoogle Scholar
  3. Bange HW, Bartell UH, Rapsomanikis S, Andreae MO. 1994. Methane in the Baltic and North seas and a reassessment of the marine emissions of methane. Global Biogeochem Cycles 8:465–80.CrossRefGoogle Scholar
  4. Bange HW, Bergmann K, Hansen HP, Kock A, Koppe R, Malien F, Ostrau C. 2010. Dissolved methane during hypoxic events at the Boknis Eck time series station (Eckernförde Bay, SW Baltic Sea). Biogeosciences 7:1279–84.CrossRefGoogle Scholar
  5. Bastviken D, Cole J, Pace M, Tranvik L. 2004. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles 18:GB4009. doi: 10.1029/2004GB002238.CrossRefGoogle Scholar
  6. Bates TS, Kelly KC, Johnson JE, Gammon RH. 1996. A reevaluation of the open ocean source of methane to the atmosphere. J Geophys Res 101(D3):6953–61.CrossRefGoogle Scholar
  7. Bogard MJ, del Giorgio PA, Boutet L, Garcia Chaves MC, Merante A, Prairie YT, Derry AM. 2014. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat Commun 5:5350. doi: 10.1038/ncomms6350.PubMedCrossRefGoogle Scholar
  8. Borges AV, Frankignoulle M. 1999. Daily and seasonal variations of the partial pressure of CO2 in surface seawater along Belgian and southern Dutch coastal areas. J Mar Syst 19:251–66.CrossRefGoogle Scholar
  9. Borges AV, Frankignoulle M. 2002. Distribution and air-water exchange of carbon dioxide in the Scheldt plume off the Belgian coast. Biogeochemistry 59:41–67.CrossRefGoogle Scholar
  10. Borges AV, Abril G. 2011. Carbon dioxide and methane dynamics in estuaries. In: Wolanski E, McLusky D, Eds. Treatise on estuarine and coastal science, volume 5: biogeochemistry. Waltham: Academic Press. p 119–61.CrossRefGoogle Scholar
  11. Borges AV, Champenois W. 2015. Seasonal and spatial variability of dimethylsulfoniopropionate (DMSP) in the Mediterranean seagrass Posidonia oceanica. Aquat Bot 125:72–9.CrossRefGoogle Scholar
  12. Borges AV, Darchambeau F, Teodoru CR, Marwick TR, Tamooh F, Geeraert N, Omengo FO, Guérin F, Lambert T, Morana C, Okuku E, Bouillon S. 2015. Globally significant greenhouse gas emissions from African inland waters. Nat Geosci 8:637–42.CrossRefGoogle Scholar
  13. Borges AV, Champenois W, Gypens N, Delille B, Harlay J. 2016. Massive marine methane emissions from near-shore shallow coastal areas. Sci Rep 6:27908. doi: 10.1038/srep27908.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Braeckman U, Yazdani Foshtomi M, Van Gansbeke D, Meysman F, Soetaert K, Vincx M, Vanaverbeke J. 2014. Variable importance of macrofaunal functional biodiversity for biogeochemical cycling in temperate coastal sediments. Ecosystems 17:720–37.Google Scholar
  15. Crill PM, Martens CS. 1983. Spatial and temporal fluctuations of methane production in anoxic coastal marine sediments. Limnol Oceanogr 6:1117–30.CrossRefGoogle Scholar
  16. Damm E, Kiene RP, Schwarz J, Falck E, Dieckmann G. 2008. Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP. Mar Chem 109:45–59.CrossRefGoogle Scholar
  17. Damm E, Thoms S, Beszczynska-Möller A, Nöthig EM, Kattner G. 2015. Methane excess production in oxygen-rich polar water and a model of cellular conditions for this paradox. Polar Sci 9:327–34.CrossRefGoogle Scholar
  18. Damm E, Helmke E, Thoms S, Schauer U, Nöthig E, Bakker K, Kiene R. 2010. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeoscience 7:1099–108.CrossRefGoogle Scholar
  19. de Angelis MA, Lee C. 1994. Methane production during zooplankton grazing on marine phytoplankton. Limnol Oceanogr 39:1298–308.CrossRefGoogle Scholar
  20. de Haas H, van Weering TCE. 1997. Recent sediment accumulation, organic carbon burial and transport in the northeastern North Sea. Mar Geol 136:173–87.CrossRefGoogle Scholar
  21. Delhez EJM, Carabin G. 2001. Integrated modelling of the Belgian Coastal Zone. Estuar Coast Shelf Sci 53:477–91.CrossRefGoogle Scholar
  22. del Valle DA, Karl DM. 2014. Aerobic production of methane from dissolved water-column methylphosphonate and sinking particles in the North Pacific Subtropical Gyre. Aquat Microbial Ecol 73:93–105.CrossRefGoogle Scholar
  23. del Valle DA, Slezak D, Smith CM, Rellinger AN, Kieber DJ, Kiene RP. 2011. Effect of acidification on preservation of DMSP in seawater and phytoplankton cultures: Evidence for rapid loss and cleavage of DMSP in samples containing Phaeocystis sp. Mar Chem 124:57–67.CrossRefGoogle Scholar
  24. Díaz RJ, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321:926–9.PubMedCrossRefGoogle Scholar
  25. Egger M, Lenstra W, Jong D, Meysman FJR, Sapart CJ, van der Veen C, Röckmann T, Gonzalez S, Slomp CP. 2016. Rapid sediment accumulation results in high methane effluxes from coastal sediments. Plos ONE. doi: 10.1371/journal.pone.0161609.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Faure K, Greinert J, Schneider von Deimling J, McGinnis DF, Kipfer R, Linke P. 2010. Methane seepage along the Hikurangi margin of New Zealand: Geochemical and physical data from the water column, sea surface and atmosphere. Mar Geol 272:170–88.CrossRefGoogle Scholar
  27. Florez-Leiva L, Damm E, Farías L. 2013. Methane production induced by dimethylsulfide in surface water of an upwelling ecosystem. Prog Oceanogr 112–113:38–48.CrossRefGoogle Scholar
  28. Gasparini S, Daro MH, Antajan E, Tackx M, Rousseau V, Parent JY, Lancelot C. 2000. Mesozooplankton grazing during the Phaeocystis globosa bloom in the Southern Bight of the North Sea. J Sea Res 4:345–56.CrossRefGoogle Scholar
  29. Gentz T, Damm E, Schneider von Deimling J, Mau S, McGinnis DF, Schlüter M. 2014. A water column study of methane around gas flares located at the West, Spitsbergen continental margin. Cont Shelf Res 72:107–18.CrossRefGoogle Scholar
  30. Graves CA, Steinle L, Rehder G, Niemann H, Connelly DP, Lowry D, Fisher RE, Stott AW, Sahling H, James RH. 2015. Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard. J Geophys Res 120:6185–201.CrossRefGoogle Scholar
  31. Grossart H-P, Frindte K, Dziallas C, Eckert W, Tang KW. 2011. Microbial methane production in oxygenated water column of an oligotrophic lake. Proc Nat Acad Sci USA 108:19657–61.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gypens N, Borges AV, Speeckaert G, Lancelot C. 2014. The dimethylsulfide cycle in the eutrophied southern North Sea: a model study integrating phytoplankton and bacterial processes. PLoS ONE 9:e85862. doi: 10.1371/journal.pone.0085862.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gypens N, Borges AV. 2014. Increase in dimethylsulfide (DMS) emissions due to eutrophication of coastal waters offsets their reduction due to ocean acidification. Front Mar Sci Mar Ecosyst Ecol 1:4. doi: 10.3389/fmars.2014.00004.CrossRefGoogle Scholar
  34. Gypens N, Borges AV, Lancelot C. 2009. Effect of eutrophication on air-sea CO2 fluxes in the coastal Southern North Sea: a model study of the past 50 years. Global Change Biology 15:1040–56.CrossRefGoogle Scholar
  35. Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JDH. 1965. Fluorometric determination of chlorophyll. J Cons Perm Int Explor Mer 30:3–15.CrossRefGoogle Scholar
  36. Høyer J, Karagali I. 2017. Sea surface temperature climate data record for the North Sea and Baltic Sea. J Clim. doi: 10.1175/JCLI-D-15-0663.1 (in press).CrossRefGoogle Scholar
  37. IPCC. 2013. Fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM Eds. Cambridge: Cambridge University Press. p 1535.Google Scholar
  38. Karl DM, Beversdorf L, Bjorkman KM, Church MJ, Martinez A, DeLong EF. 2008. Aerobic production of methane in the sea. Nat Geosci 1:473–8.CrossRefGoogle Scholar
  39. Karl DM, Tilbrook BD. 1994. Production and transport of methane in oceanic particulate organic matter. Nature 368:732–4.CrossRefGoogle Scholar
  40. Keller MD, Belows WK, Guillard RRL. 1989. Dimethyl sulfide production in marine phytoplankton. In: Saltzman E, Cooper WJ, Eds. Biogenic sulfur in the environment. Washington, DC: American Chemical Society. p 167–82.CrossRefGoogle Scholar
  41. Kiene RP. 1991. Production and consumption of methane in aquatic systems. In: Rogers JE, Whitman WB, Eds. Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes. Washington DC: American Society for Microbiology. p 111–46.Google Scholar
  42. Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque J-F, Langenfelds RL, Le Quere C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G. 2013. Three decades of global methane sources and sinks. Nat Geosci 6:813–23.CrossRefGoogle Scholar
  43. Lancelot C, Spitz Y, Gypens N, Ruddick K, Becquevort S, Rousseau V, Lacroix G, Billen G. 2005. Modelling diatom and Phaeocystis blooms and nutrient cycles in the Southern Bight of the North Sea: the MIRO model. Mar Ecol Prog Ser 289:63–78.CrossRefGoogle Scholar
  44. Lancelot C, Gypens N, Billen G, Garnier J, Roubeix V. 2007. Testing an integrated river–ocean mathematical tool for linking marine eutrophication to land use: the Phaeocystis-dominated Belgian coastal zone (Southern North Sea) over the past 50 years. J Mar Syst 64:216–28.CrossRefGoogle Scholar
  45. Le Bot S, Van Lancker V, Deleu S, De Batist M, Henriet JP, Haegeman W. 2005. Geological characteristics and geotechnical properties of Eocene and Quaternary deposits on the Belgian continental shelf: synthesis in the context of offshore wind farming. Neth J Geosci 84:147–60.Google Scholar
  46. Lenhart K, Klintzsch T, Langer G, Nehrke G, Bunge M, Schnell S, Keppler F. 2016. Evidence for methane production by marine algae (Emiliana huxleyi) and its implication for the methane paradox in oxic waters. Biogeosciences 13:3163–74.CrossRefGoogle Scholar
  47. Martens CS, Albert DB, Alperin MJ. 1998. Biogeochemical processes controlling methane in gassy coastal sediments-Part 1. A model coupling organic matter flux to gas production, oxidation and transport. Cont Shelf Res 18:1741–70.CrossRefGoogle Scholar
  48. Mau S, Gentz T, Körber J-H, Torres ME, Römer M, Sahling H, Wintersteller P, Martinez R, Schlüter M, Helmke E. 2015. Seasonal methane accumulation and release from a gas emission site in the central North Sea. Biogeosciences 12:5261–76.CrossRefGoogle Scholar
  49. Mau S, Valentine DL, Clark JF, Reed J, Camilli R, Washburn L. 2007. Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil Point, California. Geophys Res Lett 34:L22603. doi: 10.1029/2007GL031344.CrossRefGoogle Scholar
  50. Metcalf WW, Griffin BM, Cicchillo RM, Gao J, Janga SC, Cooke HA, Circello BT, Evans BS, Martens-Habbena W, Stahl DA, van der Donk WA. 2012. Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. Science 337:1104–7.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Middelburg JJ, Klaver G, Nieuwenhuize J, Wielemaker A, de Haas W, Vlug T, van der Nat JFWA. 1996. Organic matter mineralization in intertidal sediments along an estuarine gradient. Mar Ecol Prog Ser 132:157–68.CrossRefGoogle Scholar
  52. Middelburg JJ, Nieuwenhuize J, Iversen N, Høgh N, De Wilde H, Helder W, Seifert R, Christof O. 2002. Methane distribution in European tidal estuaries. Biogeochemistry 59:95–119.CrossRefGoogle Scholar
  53. Missiaen T, Murphy S, Loncke L, Henriet J-P. 2002. Very high-resolution seismic mapping of shallow gas in the Belgian coastal zone. Cont Shelf Res 22:2291–301.CrossRefGoogle Scholar
  54. Mommaerts J-P, Pichot G, Ozer J, Adam YA, Baeyens WFJ. 1984. Nitrogen cycling and budget in Belgian coastal waters: North Sea areas with and without river inputs. Rapports et Procès-Verbaux du Conseil International pour l’Exploration de la Mer 183:57–69.Google Scholar
  55. Naqvi SWA, Bange HW, Farias L, Monteiro PMS, Scranton MI, Zhang J. 2010. Marine hypoxia/anoxia as a source of CH4 and N2O. Biogeosciences 7:2159–90.CrossRefGoogle Scholar
  56. Nightingale PD, Malin G, Law CS, Watson AJ, Liss PS, Liddicoat MI, Boutin J, Upstill-Goddard RC. 2000. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem Cycles 14:373–87.CrossRefGoogle Scholar
  57. Oremland RS. 1975. Methane production in shallow-water, tropical marine sediments. Appl Microbiol 30:602–8.PubMedPubMedCentralGoogle Scholar
  58. Oremland RS. 1979. Methanogenic activity in plankton samples and fish intestines: a mechanism for in situ methanogenesis in oceanic surface waters. Limnol Oceanogr 24:1136–41.CrossRefGoogle Scholar
  59. Provoost P, Braeckman U, Van Gansbeke D, Moodley L, Soetaert K, Middelburg JJ, Vanaverbeke J. 2013. Modelling benthic oxygen consumption and benthic-pelagic coupling at a shallow station in the southern North Sea. Estuar Coast Shelf Sci 120:1–11.CrossRefGoogle Scholar
  60. Rauch M, Denis L, Dauvin J-C. 2008. The effects of Phaeocystis globosa bloom on the dynamics of the mineralization processes in intertidal permeable sediment in the Eastern English Channel (Wimereux, France). Mar Pollut Bull 56:1284–93.PubMedCrossRefGoogle Scholar
  61. Rehder G, Keir RS, Suess E, Pohlmann T. 1998. The multiple sources and patterns of methane in North Sea waters. Aquat Geochem 4:403–27.CrossRefGoogle Scholar
  62. Repeta DJ, Ferrón S, Sosa OA, Johnson CG, Repeta LD, Acker M, DeLong EF, Karl DM. 2016. Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nat Geosci. doi: 10.1038/NGEO2837.CrossRefGoogle Scholar
  63. Rhee TS, Kettle AJ, Andreae MO. 2009. Methane and nitrous oxide emissions from the ocean: a reassessment using basin-wide observations in the Atlantic. J Geophys Res 114:D12304. doi: 10.1029/2008JD011662.CrossRefGoogle Scholar
  64. Rousseau V, Leynaert A, Daoud N, Lancelot C. 2002. Diatom succession, silicification and silicic acid availability in Belgian coastal waters (Southern North Sea). Mar Ecol Prog Ser 236:61–73.CrossRefGoogle Scholar
  65. Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell JG, Dlugokencky EJ, Etiope G, Bastviken D, Houweling S, Janssens-Maenhout G, Tubiello FN, Castaldi S, Jackson RB, Alexe M, Arora VK, Beerling DJ, Bergamaschi P, Blake DR, Brailsford G, Brovkin V, Bruhwiler L, Crevoisier C, Crill P, Kovey K, Curry C, Frankenberg C, Gedney N, Höglund-Isaksson L, Ishizawa M, Ito A, Joos F, Kim H-S, Kleinen T, Krummel P, Lamarque J-F, Langenfelds R, Locatelli R, Machida T, Maksyutov S, McDonald KC, Marshall J, Melton JR, Morino I, Naik V, O’Doherty S, Parmentier F-JW, Patra PK, Peng C, Peng S, Peters G, Pison I, Prigent C, Prinn R, Ramonet M, Riley WJ, Saito M, Sanyini M, Schroeder R, Simpson IJ, Spahni R, Steele P, Takizawa A, Thornton BF, Tian H, Tohjima Y, Viovy N, Voulgarakis A, van Weele M, van der Werf G, Weiss R, Wiedinmyer C, Wilton DJ, Wiltshire A, Worthy D, Wunch DB, Xu X, Yoshida Y, Zhang B, Zhang Z, Zhu Q. 2016. The global methane budget. Earth Syst Sci Data 8:697–751.CrossRefGoogle Scholar
  66. Sawicka JE, Brüchert V. 2017. Annual variability and regulation of methane and sulfate fluxes in Baltic Sea estuarine sediments. Biogeosciences 14:325–39.CrossRefGoogle Scholar
  67. Schmale O, Beaubien SE, Rehder G, Greinert J, Lombardi S. 2010. Gas seepage in the Dnepr paleo-delta area (NW-Black Sea) and its regional impact on the water column methane cycle. J Mar Syst 80:90–100.CrossRefGoogle Scholar
  68. Schneider von Deimling J, Rehder G, Greinert J, McGinnnis DF, Boetius A, Linke P. 2011. Quantification of seep-related methane gas emissions at Tommeliten, North Sea. Cont Shelf Res 31:867–78.CrossRefGoogle Scholar
  69. Schulz S, Matsuyama H, Conrad R. 1997. Temperature dependence of methane production from different precursors in a profundal sediment (Lake Constance). FEMS Microbiol Ecol 22:207–13.CrossRefGoogle Scholar
  70. Scranton MI, McShane K. 1991. Methane fluxes in the southern North Sea: the role of European rivers. Cont Shelf Res 11:37–52.CrossRefGoogle Scholar
  71. Shakhova N, Semiletov I, Leifer I, Salyuk A, Rekant P, Kosmach D. 2010. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. J Geophys Res 115:C08007. doi: 10.1029/2009JC005602.CrossRefGoogle Scholar
  72. Simó R, Vila-Costa M. 2006. Ubiquity of algal dimethylsulfoxide in the surface ocean: geographic and temporal distribution patterns. Mar Chem 100:136–46.CrossRefGoogle Scholar
  73. Smith SR, Legler DM, Verzone KV. 2001. Quantifying uncertainties in NCEP reanalyses using high-quality research vessel observations. J Clim 14:4062–72.CrossRefGoogle Scholar
  74. Solomon EA, Kastner M, MacDonald IR, Leifer I. 2009. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico. Nat Geosci 2:561–5.CrossRefGoogle Scholar
  75. Stanley E, Casson NJ, Christel ST, Crawford JT, Loken LC, Oliver SK. 2015. The ecology of methane in streams and rivers: patterns, controls, and global significance. Ecol Monogr 86:146–71.CrossRefGoogle Scholar
  76. Stefels J. 2009. Determination of DMS DMSP, and DMSO in seawater. In: Wurl O, Ed. Practical guidelines for the analysis of seawater. Boca Raton, Florida: CRC Press Taylor & Francis Group. p 223–34.Google Scholar
  77. Stefels J, Steinke M, Turner SM, Malin G, Belviso S. 2007. Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 83:245–75.CrossRefGoogle Scholar
  78. Turner SM, Malin G, Liss PS, Harbour DS, Holligan PM. 1988. The seasonal variation of dimethyl sulphide and DMSP concentrations in nearshore waters. Limnol Oceanogr 33:364–75.CrossRefGoogle Scholar
  79. Turner SM, Malin G, Nightingale PD, Liss PS. 1996. Seasonal variation of dimethyl sulphide in the North Sea and an assessment of fluxes to the atmosphere. Mar Chem 54:245–62.CrossRefGoogle Scholar
  80. Upstill-Goddard RC, Barnes J, Frost T, Punshon S, Owens NJP. 2000. Methane in the southern North Sea: low-salinity inputs, estuarine removal, and atmospheric flux. Global Biogeochem Cycles 14:1205–17.CrossRefGoogle Scholar
  81. Upstill-Goddard RC, Barnes J. 2016. Methane emissions from UK estuaries: re-evaluating the estuarine source of tropospheric methane from Europe. Mar Chem 180:14–23.CrossRefGoogle Scholar
  82. van der Zee C, Chou L. 2005. Seasonal cycling of phosphorus in the Southern Bight of the North Sea. Biogeosciences 2:27–42.CrossRefGoogle Scholar
  83. Verfaillie E, Van Lancker V, Van Meirvenne M. 2006. Multivariate geostatistics for the predictive modelling of the surficial sand distribution in shelf seas. Cont Shelf Res 26:2454–68.CrossRefGoogle Scholar
  84. Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–82.CrossRefGoogle Scholar
  85. Ward BB, Kilpatrick KA. 1990. Relationship between substrate concentration and oxidation of ammonium and methane in a stratified water column. Cont Shelf Res 10:1193–208.CrossRefGoogle Scholar
  86. Wever TF, Abegg F, Fiedler HM, Fechner G, Stender IH. 1998. Shallow gas in the muddy sediments of Eckernförde Bay, Germany. Cont Shelf Res 18:1715–39.CrossRefGoogle Scholar
  87. Yvon-Durocher G, Allen AP, Bastviken D, Conrad R, Gudasz C, St-Pierre A, Thanh-Duc N, del Giorgio PA. 2014. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507:488–91.PubMedCrossRefGoogle Scholar
  88. Zindler C, Bracher A, Marandino CA, Taylor B, Torrecilla E, Kock A, Bange HW. 2013. Sulphur compounds, methane, and phytoplankton: interactions along a north–south transit in the western Pacific Ocean. Biogeosciences 10:3297–311.CrossRefGoogle Scholar
  89. Zeikus JG, Winfrey MR. 1976. Temperature limitation of methanogenesis in aquatic sediments. Appl Environ Microbiol 31:99–107.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Alberto V. Borges
    • 1
    Email author
  • Gaëlle Speeckaert
    • 1
    • 2
  • Willy Champenois
    • 1
  • Mary I. Scranton
    • 3
  • Nathalie Gypens
    • 2
  1. 1.Unité d’Océanographie Chimique, Institut de Physique (B5)Université de LiègeLiègeBelgium
  2. 2.Laboratoire d’Ecologie des Systèmes AquatiquesUniversité Libre de BruxellesBrusselsBelgium
  3. 3.School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookUSA

Personalised recommendations