, Volume 21, Issue 3, pp 443–458 | Cite as

Cotton-Grass and Blueberry have Opposite Effect on Peat Characteristics and Nutrient Transformation in Peatland

  • Eva Kaštovská
  • Petra Straková
  • Keith Edwards
  • Zuzana Urbanová
  • Jiří Bárta
  • Jiří Mastný
  • Hana Šantrůčková
  • Tomáš Picek


Peatlands are large repositories of carbon (C). Sphagnum mosses play a key role in C sequestration, whereas the presence of vascular plants is generally thought to stimulate peat decomposition. Recent studies stress the importance of plant species for peat quality and soil microbial activity. Thus, learning about specific plant–microbe–soil relations and their potential feedbacks for C and nutrient cycling are important for a correct understanding of C sequestration in peatlands and its potential shift associated with vegetation change. We studied how the long-term presence of blueberry and cotton-grass, the main vascular dominants of spruce swamp forests, is reflected in the peat characteristics, soil microbial biomass and activities, and the possible implications of their spread for nutrient cycling and C storage in these systems. We showed that the potential effect of vascular plants on ecosystem functioning is species specific and need not necessarily result in increased organic matter decomposition. Although the presence of blueberry enhanced phosphorus availability, soil microbial biomass and the activities of C-acquiring enzymes, cotton-grass strongly depleted phosphorus and nitrogen from the peat. The harsh conditions and prevailing anoxia retarded the decomposition of cotton-grass litter and caused no significant enhancement in microbial biomass and exoenzymatic activity. Therefore, the spread of blueberry in peatlands may stimulate organic matter decomposition and negatively affect the C sequestration process, whereas the potential spread of cotton-grass would not likely change the functioning of peatlands as C sinks.


peatlands C/N/P stoichiometry vascular plants Sphagnum nutrient availability decomposition enzymatic activity 



This study was supported by the Grant Agency of Czech Republic (13-17398S), the Ministry of Youth Sports and Education of Czech Republic (LM2015075) and the Academy of Finland (No. 1259190, for PS). We thank Terezia Říhová for analyses on FIA, Ville Narhi for elemental analyses, Dan Vaněk for analyses on LiquiTOC and Ondřej Žampach for his help with the field work and FTIR measurements.

Supplementary material

10021_2017_159_MOESM1_ESM.docx (42 kb)
Supplementary material 1 (DOCX 42 kb)


  1. Artz RRE, Chapman SJ, Robertson AHJ, Potts JM, Laggoun-Defarge F, Gogo S, Comont L, Disnar J-R, Francez A-J. 2008. FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands. Soil Biol Biochem 40:515–27.CrossRefGoogle Scholar
  2. Bragazza L. 2006. A decade of plant species changes on a mire in the Italian Alps: vegetation-controlled or climate-driven mechanisms? Clim Change 77:415–29.CrossRefGoogle Scholar
  3. Bragazza L, Bardgett RD, Mitchell EAD, Buttler A. 2015. Linking soil microbial communities to vascular plant abundance along a climate gradient. New Phytol 205:1175–82.CrossRefPubMedGoogle Scholar
  4. Bragazza L, Parisod J, Buttler A, Bardgett RD. 2013. Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands. Nat Clim Change 3:273–7.CrossRefGoogle Scholar
  5. Breeuwer A, Robroek BJM, Limpens J, Heijmans M, Schouten MGC, Berendse F. 2009. Decreased summer water table depth affects peatland vegetation. Basic Appl Ecol 10:330–9.CrossRefGoogle Scholar
  6. Brookes PC, Landman A, Pruden G, Jenkinson DS. 1985. Chloroform fumigation and the release of soil nitrogen—a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–42.CrossRefGoogle Scholar
  7. Brookes PC, Powlson DS, Jenkinson DS. 1982. Measurement of microbial phosphorus in soil. Soil Biol Biochem 14:319–29.CrossRefGoogle Scholar
  8. Bubier J, Crill P, Mosedale A, Frolking S, Linder E. 2003. Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers. Global Biogeochem Cy 17:1–15.CrossRefGoogle Scholar
  9. Cairney JWG, Meharg AA. 2003. Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. Eur J Soil Sci 54:735–40.CrossRefGoogle Scholar
  10. Chapin FSIII. 2003. Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Ann Bot 91:455–63.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cholewa E, Griffith M. 2004. The unusual vascular structure of the corm of Eriophorum vaginatum: implications for efficient retranslocation of nutrients. J Exp Bot 55:731–41.CrossRefPubMedGoogle Scholar
  12. Cleveland CC, Liptzin D. 2007. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–52.CrossRefGoogle Scholar
  13. Dieleman CM, Branfireun BA, McLaughlin JW, Lindo Z. 2015. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability. Glob Change Biol 21:388–95.CrossRefGoogle Scholar
  14. Dorrepaal E. 2007. Are plant growth-form-based classifications useful in predicting northern ecosystem carbon cycling feedbacks to climate change? J Ecol 95:1167–80.CrossRefGoogle Scholar
  15. Elmendorf SC, Henry GHR, Hollister RD, Bjork RG, Boulanger-Lapointe N, Cooper EJ, Cornelissen JHC, Day TA, Dorrepaal E, Elumeeva TG, Gill M, Gould WA, Harte J, Hik DS, Hofgaard A, Johnson DR, Johnstone JF, Jonsdottir IS, Jorgenson JC, Klanderud K, Klein JA, Koh S, Kudo G, Lara M, Levesque E, Magnusson B, May JL, Mercado-Diaz JA, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Onipchenko VG, Rixen C, Schmidt NM, Shaver GR, Spasojevic MJ, Porhallsdottir PE, Tolvanen A, Troxler T, Tweedie CE, Villareal S, Wahren C-H, Walker X, Webber PJ, Welker JM, Wipf S. 2012. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim Change 2:453–7.CrossRefGoogle Scholar
  16. Giesler R, Lundstrom U. 1993. Soil solution chemistry—effects of bulking soil samples. Soil Sci Soc Am J 57:1283–8.CrossRefGoogle Scholar
  17. Haichar FEZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W. 2008. Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:221–1230.CrossRefGoogle Scholar
  18. Hájek T, Ballance S, Limpens J, Zijlstra M, Verhoeven JTA. 2011. Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro. Biogeochemistry 103:45–57.CrossRefGoogle Scholar
  19. Heijmans MMPD, van der Knaap YAM, Holmgren M, Limpens J. 2013. Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events. Glob Change Biol 19:2240–50.CrossRefGoogle Scholar
  20. Hill BH, Elonen CM, Jicha TM, Kolka RK, Lehto LLP, Sebestyen SD, Seifert-Monson LR. 2014. Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types. Biogeochemistry 120:203–24.CrossRefGoogle Scholar
  21. Hobbie SE. 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–22.CrossRefGoogle Scholar
  22. Jassey VEJ, Chiapusio G, Binet P, Buttler A, Laggoun-Defarge F, Delarue F, Bernard N, Mitchell EAD, Toussaint M-L, Francez A-J, Gilbert D. 2013. Above—and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions. Glob Change Biol 19:811–23.CrossRefGoogle Scholar
  23. Kalnina L, Stivrins N, Kuske E, Ozola I, Pujate A, Zeimule S, Grudzinska I, Ratniece V. 2015. Peat stratigraphy and changes in peat formation during the Holocene in Latvia. Quatern Int 383:186–95.CrossRefGoogle Scholar
  24. Kivimaki SK, Yli-Petays M, Tuittila ES. 2008. Carbon sink function of sedge and Sphagnum patches in a restored cut-away peatland: increased functional diversity leads to higher production. J Appl Ecol 45:921–9.CrossRefGoogle Scholar
  25. Kopáček J, Hejzlar J. 1995. Semi-micro determination of total phosphorus in soils, sediments and organic materials—a simplified perchloric-acid digestion procedure. Commun Soil Sci Plant Anal 26:1935–46.CrossRefGoogle Scholar
  26. Kuiper JJ, Mooij WM, Bragazza L, Robroek BJM. 2014. Plant functional types define magnitude of drought response in peatland CO2 exchange. Ecology 95:123–31.CrossRefPubMedGoogle Scholar
  27. Kuzyakov Y. 2002. Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–96.CrossRefGoogle Scholar
  28. Laine AM, Bubier J, Riutta T, Nilsson MB, Moore TR, Vasander H, Tuittila E-S. 2012. Abundance and composition of plant biomass as potential controls for mire net ecosytem CO2 exchange. Botany 90:63–74.CrossRefGoogle Scholar
  29. Larmola T, Leppanen SM, Tuittila E-S, Aarva M, Merila P, Fritze H, Tiirola M. 2014. Methanotrophy induces nitrogen fixation during peatland development. Proc Natl Acad Sci USA 111(2):734–9.CrossRefPubMedGoogle Scholar
  30. Leppala M, Kukko-Oja K, Laine J, Tuittila E-S. 2008. Seasonal dynamics of CO2 exchange during primary succession of boreal mires as controlled by phenology of plants. Ecoscience 15:460–71.CrossRefGoogle Scholar
  31. Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G. 2008. Peatlands and the carbon cycle: from local processes to global implications a synthesis. Biogeosciences 5:1739.CrossRefGoogle Scholar
  32. Moore TR, Bubier JL, Bledzki L. 2007. Litter decomposition in temperate peatland ecosystems: the effect of substrate and site. Ecosystems 10:949–63.CrossRefGoogle Scholar
  33. Pinsonneault AJ, Moore TR, Roulet NT, Lapierre J-F. 2016. Biodegradability of vegetation-derived dissolved organic carbon in a cool temperate ombrotrophic bog. Ecosystems 19:1023–36.CrossRefGoogle Scholar
  34. Read DJ. 1996. The structure and function of the ericoid mycorrhizal root. Ann Bot 77:365–74.CrossRefGoogle Scholar
  35. Read DJ, Leake JR, Perez-Moreno J. 2004. Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–63.CrossRefGoogle Scholar
  36. Riutta T, Laine J, Tuittila ES. 2007. Sensitivity of CO2 exchange of fen ecosystem components to water level variation. Ecosystems 10:718–33.CrossRefGoogle Scholar
  37. Robroek BJM, Albrecht RJH, Hamard S, Pulgarin A, Bragazza L, Buttler A, Jassey VE. 2015a. Peatland vascular plant functional types affect dissolved organic matter chemistry. Plant Soil 407:135–43.CrossRefGoogle Scholar
  38. Robroek BJM, Jassey VEJ, Kox MAR, Berendsen RL, Mills RTE, Cecillon L, Puissant J, Meima-Franke M, Bakker P, Bodelier PLE. 2015b. Peatland vascular plant functional types affect methane dynamics by altering microbial community structure. J Ecol 103:925–34.CrossRefGoogle Scholar
  39. Saarnio S, Wittenmayer L, Merbach W. 2004. Rhizospheric exudation of Eriophorum vaginatum L.—Potential link to methanogenesis. Plant Soil 267:343–55.CrossRefGoogle Scholar
  40. Salmon VG, Soucy P, Mauritz M, Celis G, Natali SM, Mack MC, Schuur EAG. 2016. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Glob Change Biol 22:1927–41.CrossRefGoogle Scholar
  41. Schmidt SK, Costello EK, Nemergut DR, Cleveland CC, Reed SC, Weintraub MN, Meyer AF, Martin AM. 2007. Biogeochemical consequences of rapid microbial turnover and seasonal succession in soil. Ecology 88:1379–85.CrossRefPubMedGoogle Scholar
  42. Shaver GR, Fetcher N, Chapin FS. 1986. Growth and flowering in Eriophorum vaginatum—annual and latitudinal variation. Ecology 67:1524–35.CrossRefGoogle Scholar
  43. Silvan N, Tuittila ES, Vasander H, Laine J. 2004. Eriophorum vaginatum plays a major role in nutrient immobilisation in boreal peatlands. Ann Bot Fenn 41:189–99.Google Scholar
  44. Sinsabaugh RL, Hill BH, Shah JJF. 2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–8.CrossRefPubMedGoogle Scholar
  45. Sterner RW, Elser JJ. 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton: Princeton University Press. p 441.Google Scholar
  46. Straková P, Penttila T, Laine J, Laiho R. 2012. Disentangling direct and indirect effects of water table drawdown on above- and belowground plant litter decomposition: consequences for accumulation of organic matter in boreal peatlands. Glob Change Biol 18:322–35.CrossRefGoogle Scholar
  47. Strom L, Falk JM, Skov K, Jackowicz-Korczynski M, Mastepanov M, Christensen TR, Lund M, Schmidt NM. 2015. Controls of spatial and temporal variability in CH4 flux in a high arctic fen over three years. Biogeochemistry 125:21–35.CrossRefGoogle Scholar
  48. Tuittila ES, Komulainen VM, Vasander H, Laine J. 1999. Restored cut-away peatland as a sink for atmospheric CO2. Oecologia 120:563–74.CrossRefPubMedGoogle Scholar
  49. Turetsky MR, Bond-Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, Tuittila ES. 2012. The resilience and functional role of moss in boreal and arctic ecosystems. New Phytol 196:49–67.CrossRefPubMedGoogle Scholar
  50. van Breemen N. 1995. How Sphagnum bogs down other plants. Trends Ecol Evol 10:270–5.CrossRefPubMedGoogle Scholar
  51. Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil microbial biomass-C. Soil Biol Biochem 19:703–7.CrossRefGoogle Scholar
  52. Verhoeven JTA, Liefveld WM. 1997. The ecological significance of organochemical compounds in Sphagnum. Acta Bot Neerl 46:117–30.CrossRefGoogle Scholar
  53. Wahren Ch, Walker MD, Bret-Harte MS. 2005. Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment. Glob Change Biol 11:537–52.CrossRefGoogle Scholar
  54. Wang M, Moore TR. 2014. Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystems 17:673–84.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Eva Kaštovská
    • 1
  • Petra Straková
    • 2
  • Keith Edwards
    • 1
  • Zuzana Urbanová
    • 1
  • Jiří Bárta
    • 1
  • Jiří Mastný
    • 1
  • Hana Šantrůčková
    • 1
  • Tomáš Picek
    • 1
  1. 1.Department of Ecosystem Biology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Department of Forest Sciences, Peatland Ecology GroupUniversity of HelsinkiHelsinkiFinland

Personalised recommendations