, Volume 21, Issue 2, pp 316–330 | Cite as

Draining the Pool? Carbon Storage and Fluxes in Three Alpine Plant Communities

  • Mia Vedel SørensenEmail author
  • Richard Strimbeck
  • Kristin Odden Nystuen
  • Rozalia Erzsebet Kapas
  • Brian J. Enquist
  • Bente Jessen Graae


Shrub communities have expanded in arctic and alpine tundra during recent decades. Changes in shrub abundance may alter ecosystem carbon (C) sequestration and storage, with potential positive or negative feedback on global C cycling. To assess potential implications of shrub expansion in different alpine plant communities, we compared C fluxes and pools in one Empetrum-dominated heath, one herb- and cryptogam-dominated meadow, and one Salix-shrub community in Central Norway. Over two growing seasons, we measured Gross Ecosystem Photosynthesis, Ecosystem Respiration (ER), and C pools for above-ground vegetation, litter, roots, and soil separated into organic and mineral horizons. Both the meadow and shrub communities had higher rates of C fixation and ER, but the total ecosystem C pool in the meadow was twice that of the shrub community because of more C in the organic soil horizon. Even though the heath community had the lowest rates of C fixation, it stored one and a half times more C than the shrub community. The results indicate that the relatively high above-ground biomass sequestering C during the growing season is not associated with high C storage in shrub-dominated communities. Instead, shrub-dominated areas may be draining the carbon-rich alpine soils because of high rates of decomposition. These processes were not shown by mid-growing season C fluxes, but were reflected by the very different distribution of C pools in the three habitats.


carbon soil carbon gross ecosystem photosynthesis net ecosystem exchange ecosystem respiration Salix heath meadow Tundra Empetrum 



This research was supported by I.K Lykkes fond, Nansenfondet, and The Norwegian Research Council (23060/E10). We gratefully acknowledge help from all our ECOSHRUB field assistants and from the Enquist lab. We thank Aimee Classen’s lab for assistance and collaboration on root and soil samples. We thank Kongsvoll Biological Station and Norsk Villreinsenter for accommodation. We would also like to thank Hanna Lee, Nancy Lea Eik-Nes, James Speed, Stuart Smith, Susanna Karlsson, and the anonymous reviewers for valuable comments on earlier versions of the manuscript.

Supplementary material

10021_2017_158_MOESM1_ESM.pdf (634 kb)
Supplementary material 1 (PDF 635 kb)


  1. Arnone JA, Obrist D. 2003. A large daylight geodesic dome for quantofication of whole-ecosystem CO2 and water vapour fluxes in arid shrublands. J Arid Environ 55:629–43.CrossRefGoogle Scholar
  2. Austrheim G, Solberg EJ, Mysterud A. 2011. Spatio-temporal variation in large herbivore pressure in Norway during 1949–1999: has decreased grazing by livestock been countered by increased browsing by cervids? Wildlife Biol 17:286–98.CrossRefGoogle Scholar
  3. Baele A, Sørensen MV, Nystuen KO, Limpens J, Graae BJ, De Frenne P. Shrub encroachment in alpine plant communities: Vegetation canopy effects on microclimate (unpublished manuscript).Google Scholar
  4. Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK. 2005. A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol 20:634–41.CrossRefPubMedGoogle Scholar
  5. Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw 67:48.CrossRefGoogle Scholar
  6. Becklin KM, Pallo ML, Galen C. 2012. Willows indirectly reduce arbuscular mycorrhizal fungal colonization in understorey communities. J Ecol 100:343–51.CrossRefGoogle Scholar
  7. Björk RG, Molau U. 2007. Ecology of alpine snowbeds and the impact of global change. Arctic Antarctic Alpine Res 39:34–43.CrossRefGoogle Scholar
  8. Blume-Werry G, Wilson SD, Kreyling J, Milbau A. 2016. The hidden season: growing season is 50% longer below than above ground along an arctic elevation gradient. New Phytol 209:978–86.CrossRefPubMedGoogle Scholar
  9. Cahoon SM, Sullivan PF, Shaver GR, Welker JM, Post E. 2012. Interactions among shrub cover and the soil microclimate may determine future Arctic carbon budgets. Ecol Lett 15:1415–22.CrossRefPubMedGoogle Scholar
  10. Campioli M, Michelsen A, Demey A, Vermeulen A, Samson R, Lemeur R. 2009. Net primary production and carbon stocks for subarctic mesic-dry tundras with contrasting microtopography, altitude, and dominant species. Ecosystems 12:760–76.CrossRefGoogle Scholar
  11. Cannone N, Sgorbati S, Guglielmin M. 2007. Unexpected impacts of climate change on alpine vegetation. Front Ecol Environ 5:360–4.CrossRefGoogle Scholar
  12. Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD. 2015. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205:1525–36.CrossRefPubMedGoogle Scholar
  13. Cornelissen JHC, van Bodegom PM, Aerts R, Callaghan TV, van Logtestijn RSP, Alatalo J, Chapin FS, Gerdol R, Gudmundsson J, Gwynn-Jones D, Hartley AE, Hik DS, Hofgaard A, Jónsdóttir IS, Karlsson S, Klein JA, Laundre J, Magnusson B, Michelsen A, Malou U, Onipchenko VG, Quested HM, Sandvik SM, Schmidt IK, Shaver GR, Solheim B, Soudzilovskaia NA, Stenström A, Tolvanen A, Totland Ø, Wada N, Welker JM, Zhao X, Team MOLT. 2007. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10:619–27.CrossRefPubMedGoogle Scholar
  14. Deslippe JR, Simard SW. 2011. Below-ground carbon transfer among Betula nana may increase with warming in Arctic tundra. New Phytol 192:689–98.CrossRefPubMedGoogle Scholar
  15. Epstein HE, Raynolds MK, Walker DA, Bhatt US, Tucker CJ, Pinzon JE. 2012. Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades. Environ Res Lett 7:1–12.CrossRefGoogle Scholar
  16. Eskelinen A, Stark S, Männistö M. 2009. Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats. Oecologia 161:113–23.CrossRefPubMedGoogle Scholar
  17. Euskirchen ES, Bret-Harte MS, Scott GJ, Edgar C, Shaver GR. 2012. Seasonal patterns of carbon dioxide and water fluxes in three representative tundra ecosystems in northern Alaska. Ecosphere 3:1–19.CrossRefGoogle Scholar
  18. Euskirchen ES, McGuire AD, Chapin FS, Yi S, Thompson CC. 2009. Changes in vegetation in northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacks. Ecol Appl 19:1022–43.CrossRefPubMedGoogle Scholar
  19. Graae BJ, De Frenne P, Kolb A, Brunet J, Chabrerie O, Verheyen K, Pepin N, Heinken T, Zobel M, Shevtsova A, Nijs I, Milbau A. 2012. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121:3–19.CrossRefGoogle Scholar
  20. Graae BJ, Ejrnaes R, Lang SI, Meineri E, Ibarra PT, Bruun HH. 2011. Strong microsite control of seedling recruitment in tundra. Oecologia 166:565–76.CrossRefPubMedGoogle Scholar
  21. Grogan P, Jonasson S. 2006. Ecosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation type. Global Change Biol 12:1479–95.CrossRefGoogle Scholar
  22. Hartley IP, Garnett MH, Sommerkorn M, Hopkins DW, Fletcher BJ, Sloan VL, Phoenix GK, Wookey PA. 2012. A potential loss of carbon associated with greater plant growth in the European Arctic. Nat Clim Change 2:875–9.CrossRefGoogle Scholar
  23. Heffner RA, Butler MJ, Reilly CK. 1996. Pseudorepliction revisited. Ecology 77:2558–62.CrossRefGoogle Scholar
  24. Heskel MA, Atkin OK, Turnbull MH, Griffin KL. 2013. Bringing the Kok effect to light: a review on the integration of daytime respiration and net ecosystem exchange. Ecosphere 4:1–14.CrossRefGoogle Scholar
  25. Hobbie S, Nadelhoffer K, Högberg P. 2002. A synthesis: the role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant Soil 242:163–70.CrossRefGoogle Scholar
  26. Hodgson JM. 1997. Soil survey field handbook. Silsoe: Cranfield University.Google Scholar
  27. Hothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general parametric models. Biometr J 50:346–63.CrossRefGoogle Scholar
  28. Hultén E, Fries M. 1986. Atlas of North European vascular plants: north of the Tropic of Cancer. Königstein: Koeltz Scientific Books.Google Scholar
  29. Hurlbert SH. 1984. Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211.CrossRefGoogle Scholar
  30. Iversen CM, Sloan VL, Sullivan PF, Euskirchen ES, McGuire AD, Norby RJ, Walker AP, Warren JM, Wullschleger SD. 2015. The unseen iceberg: plant roots in arctic tundra. New Phytol 205:34–58.CrossRefPubMedGoogle Scholar
  31. Jasoni RL, Smith SD, Arnone IJA. 2005. Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Global Change Biol 11:749–56.CrossRefGoogle Scholar
  32. Johnson PCD. 2014. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods Ecol Evol 5:944–6.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kuzyakov Y. 2002. Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–96.CrossRefGoogle Scholar
  34. Kuzyakov Y. 2010. Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–71.CrossRefGoogle Scholar
  35. Körner C. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems. Berlin Heidelberg: Springer. pp 64–74.CrossRefGoogle Scholar
  36. Lefcheck JS. 2016. piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7:573–9.CrossRefGoogle Scholar
  37. Lenoir J, Graae BJ, Aarrestad PA, Alsos IG, Armbruster WS, Austrheim G, Bergendorff C, Birks HJB, Brathen KA, Brunet J, Bruun HH, Dahlberg CJ, Decocq G, Diekmann M, Dynesius M, Ejrnaes R, Grytnes JA, Hylander K, Klanderud K, Luoto M, Milbau A, Moora M, Nygaard B, Odland A, Ravolainen VT, Reinhardt S, Sandvik SM, Schei FH, Speed JDM, Tveraabak LU, Vandvik V, Velle LG, Virtanen R, Zobel M, Svenning JC. 2013. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Global Change Biol 19:1470–81.CrossRefGoogle Scholar
  38. Lindahl BD, Tunlid A. 2015. Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytol 205:1443–7.CrossRefPubMedGoogle Scholar
  39. Lundell R, Saarinen T, Åström H, Hänninen H. 2008. The boreal dwarf shrub Vaccinium vitis-idaea retains its capacity for photosynthesis through the winter. Botany 86:491–500.CrossRefGoogle Scholar
  40. Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS. 2004. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–3.CrossRefPubMedGoogle Scholar
  41. Marriott CA, Hudson G, Hamilton D, Neilson R, Boag B, Handley LL, Wishart J, Scrimgeour CM, Robinson D. 1997. Spatial variability of soil total C and N and their stable isotopes in an upland Scottish grassland. Plant Soil 196:151–62.CrossRefGoogle Scholar
  42. Michaletz ST, Cheng D, Kerkhoff AJ, Enquist BJ. 2014. Convergence of terrestrial plant production across global climate gradients. Nature 512:39–43.CrossRefPubMedGoogle Scholar
  43. Moen A. 1998. Nasjonalatlas for Norge: Vegetasjon. Hønefoss: Statens Kartverk.Google Scholar
  44. Molau U, Alatalo JM. 1998. Responses of subarctic-alpine plant communities to simulated environmental change: biodiversity og Bryophytes, Lichens and Vascular Plants. Ambio 27:322–8.Google Scholar
  45. Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Lévesque L, Boudreay S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Ménard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS. 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:1–15.CrossRefGoogle Scholar
  46. Myers-Smith IH, Hik DS. 2013. Shrub canopies influence soil temperatures but not nutrient dynamics: an experimental test of tundra snow–shrub interactions. Ecol Evol 3:3683–700.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Naito AT, Cairns DM. 2011. Patterns and processes of global shrub expansion. Prog Phys Geogr 35:423–42.CrossRefGoogle Scholar
  48. Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–42.CrossRefGoogle Scholar
  49. New M, Hulme M, Jones PD. 2000. Global 30-year mean monthly climatology, 1961–1990. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA.
  50. Newsham KK, Upson R, Read DJ. 2009. Mycorrhizas and dark septate root endophytes in polar regions. Fungal Ecol 2:10–20.CrossRefGoogle Scholar
  51. NGU. 2015. Berggrunn N250 og Løsmasse N50. Norges Geologiske Undersøkelse.Google Scholar
  52. Oksanen L. 2001. Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos 94:27–38.CrossRefGoogle Scholar
  53. Olofsson J, Tømmervik H, Callaghan TV. 2012. Vole and lemming activity observed from space. Nat Clim Change 2:880–3.CrossRefGoogle Scholar
  54. Parker TC, Subke JA, Wookey PA. 2015. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Global Change Biol 21:2070–81.CrossRefGoogle Scholar
  55. Qian H, Joseph R, Zeng N. 2010. Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections. Global Change Biol 16:641–56.CrossRefGoogle Scholar
  56. R Core Team. 2015. A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  57. Ravolainen VT, Bråthen KA, Ims RA, Yoccoz NG, Henden J, Killengren ST. 2011. Rapid, landscape scale responses in riparian tundra vegetation to exclusion of small and large mammalian herbivores. Basic Appl Ecol 12:643–53.CrossRefGoogle Scholar
  58. Read DJ, Perez-Moreno J. 2003. Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytol 157:475–92.CrossRefGoogle Scholar
  59. Schank JC, Koehnle TJ. 2009. Pseudoreplication is a pseudoproblem. J Comp Psychol 123:421–33.CrossRefPubMedGoogle Scholar
  60. Saarinen T, Lundell R, Hänninen H. 2011. Recovery of photosynthetic capacity in Vaccinium vitis-idaea during mild spells in winter. Plant Ecol 212:1429–40.CrossRefGoogle Scholar
  61. Schadt CW, Martin AP, Lipson DA, Schmidt SK. 2003. Seasonal dynamics of previously unknown Fungal Lineages in Tundra soils. Science 301:1359–61.CrossRefPubMedGoogle Scholar
  62. Semenchuk PR, Christiansen CT, Grogan P, Elberling B, Cooper EJ. 2016. Long-term experimentally deepened snow decreases growing-season respiration in a low- and high-arctic tundra ecosystem. J Geophys Res Biogeosci 121:1236–48.Google Scholar
  63. Settele J, Scholes R, Betts R, Bunn SE, Leadley P, Nepstad D, Overpeck JT, Taboada MA. 2014. Terrestrial and inland water systems. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change: 271–359.Google Scholar
  64. Shaver G. 2015. ITEX circumarctic CO2 flux survey data from Toolik, Alaska; Abisko, Sweden; Svalbard, Norway; Zackenberg, Northeast Greenland; Anaktuvuk River Burn, Alaska and Barrow, Alaska 2003-2009. Long Term Ecol Netw. doi: 10.6073/pasta/7e6f56dfe5b6d1d6545a24c3bdd9505e.Google Scholar
  65. Sistla SA, Moore JC, Simpson RT, Gough L, Shaver GR, Schimel JP. 2013. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 000:1–4.Google Scholar
  66. Sjögersten S, Llurba R, Ribas À, Yanez-Serrano A, Sebastià MT. 2012. Temperature and moisture controls of C fluxes in Grazed Subalpine Grasslands. Arctic Antarctic Alpine Res 44:239–46.CrossRefGoogle Scholar
  67. Sjögersten S, Wookey PA. 2009. The impact of climate change on ecosystem carbon dynamics at the Scandinavian mountain birch forest-tundra heath ecotone. Ambio 38:2–10.CrossRefPubMedGoogle Scholar
  68. Sloan VL, Fletcher BJ, Phoenix GK. 2016. Contrasting synchrony in root and leaf phenology across multiple sub-Arctic plant communities. J Ecol 104:239–48.CrossRefGoogle Scholar
  69. Sonesson M, Wielgolaski FE, Kallio P. 1975. Description of Fennoscandian Tundra ecosystems. In: Wielgolaski EE, Ed. Fennoscandian Tundra ecosystems. Berlin: Springer. p 3–28.CrossRefGoogle Scholar
  70. Sørensen MV, Strimbeck R, Nystuen KO, Kapas RE, Enquist BJ, Graae BJ. 2017. Data from: draining the pool? carbon storage and fluxes in three alpine plant communities. Dryad Digit Repos. doi: 10.5061/dryad.1n50j.
  71. Soudzilovskaia NA, van der Heijden MGA, Cornelissen JHC, Makarov MI, Onipchenko VG, Maslov MN, Akhmetzhanova AA, van Bodegom PM. 2015. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. New phytol 208:280–93.CrossRefPubMedGoogle Scholar
  72. Speed JDM, Austrheim G, Hester AJ, Mysterud A. 2013. The response of Alpine Salix Shrubs to long-term browsing varies with elevation and herbivore density. Arctic Antarctic Alpine Res 45:584–93.CrossRefGoogle Scholar
  73. Street L, Shaver G, Williams M, van Wijk M. 2007. What is the relationship between changes in canopy leaf area and changes in photosynthetic CO2 flux in arctic ecosystems? J Ecol 95:139–50.CrossRefGoogle Scholar
  74. Sturm M, McFadden JP, Liston GE, Chapin FS, Racine CH, Holmgren J. 2001a. Snow–shrub interactions in Arctic tundra: A hypothesis with climatic implications. J Clim 14:336–44.CrossRefGoogle Scholar
  75. Sturm M, Racine C, Tape K. 2001b. Climate change: increasing shrub abundance in the Arctic. Nature 411:546–7.CrossRefPubMedGoogle Scholar
  76. Sturm M, Schimel J, Michaelson G, Welker JM, Oberbauer SF, Liston GE, Fahnestock J, Romanovsky VE. 2005. Winter biological processes could help convert arctic tundra to shrubland. Bioscience 55:17–26.CrossRefGoogle Scholar
  77. Sullivan PF, Sommerkorn M, Rueth HM, Nadelhoffer KJ, Shaver GR, Welker JM. 2007. Climate and species affect fine root production with long-term fertilization in acidic tussock tundra near Toolik Lake, Alaska. Oecologia 153:643–52.CrossRefPubMedGoogle Scholar
  78. Sundqvist MK, Giesler R, Graae BJ, Wallander H, Fogelberg E, Wardle DA. 2011. Interactive effects of vegetation type and elevation on aboveground and belowground properties in a subarctic tundra. Oikos 120:128–42.CrossRefGoogle Scholar
  79. Tape K, Sturm M, Racine C. 2006. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Global Change Biol 12:686–702.CrossRefGoogle Scholar
  80. Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S. 2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles 23:GB2023.CrossRefGoogle Scholar
  81. Todd-Brown KEO, Randerson JT, Hopkins F, Arora V, Hajima T, Jones C, Shevliakova E, Tjiputra J, Volodin E, Wu T, Zhang Q, Allison SD. 2014. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 11:2341–56.CrossRefGoogle Scholar
  82. Todd-Brown KEO, Randerson JT, Post WM, Hoffman FM, Tarnocai C, Schuur EAG, Allison SD. 2013. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10:1717–36.CrossRefGoogle Scholar
  83. Tømmervik H, Johansen B, Riseth JÅ, Karlsen SR, Solberg B, Høgda KA. 2009. Above ground biomass changes in the mountain birch forests and mountain heaths of Finnmarksvidda, northern Norway, in the period 1957–2006. For Ecol Manag 257:244–57.CrossRefGoogle Scholar
  84. Vaisanen M, Ylanne H, Kaarlejarvi E, Sjogersten S, Olofsson J, Crout N, Stark S. 2014. Consequences of warming on tundra carbon balance determined by reindeer grazing history. Nat Clim Change 4:384–8.CrossRefGoogle Scholar
  85. Veen CGF, Sundqvist MK, Wardle DA. 2015. Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects. Funct Ecol 29:1365–2435.CrossRefGoogle Scholar
  86. Väre H, Vestberg M, Eurola S. 1992. Mycorrhiza and root-associated fungi in Spitsbergen. Mycorrhiza 1:93–104.CrossRefGoogle Scholar
  87. Ward SE, Smart SM, Quirk H, Tallowin JRB, Mortimer SR, Shiel RS, Wilby A, Bardgett RD. 2016. Legacy effects of grassland management on soil carbon to depth. Global Change Biol 22:2929–38.Google Scholar
  88. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH. 2004. Ecological linkages between aboveground and belowground biota. Science 304:1629–33.CrossRefPubMedGoogle Scholar
  89. Williams M, Street LE, van Wijk M, Shaver G. 2006. Identifying differences in carbon exchange among arctic ecosystem types. Ecosystems 9:288–304.CrossRefGoogle Scholar
  90. Wilmking M, Harden J, Tape K. 2006. Effect of tree line advance on carbon storage in NW Alaska. J Geophys Res Biogeosci 111:G02023.CrossRefGoogle Scholar
  91. Wookey PA, Aerts R, Bardgett RD, Baptist F, Bråthen KA, Cornelissen JHC, Gough L, Hartley IP, Hopkins DW, Lavorels S, Shaver GR. 2009. Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Global Change Biol 15:1153–72.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mia Vedel Sørensen
    • 1
    Email author
  • Richard Strimbeck
    • 1
  • Kristin Odden Nystuen
    • 1
    • 2
  • Rozalia Erzsebet Kapas
    • 1
  • Brian J. Enquist
    • 3
    • 4
  • Bente Jessen Graae
    • 1
  1. 1.Department of Biology, NTNU Norwegian University of Science and TechnologyTrondheimNorway
  2. 2.Faculty of Biosciences and AquacultureNord UniversitySteinkjerNorway
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA
  4. 4.The Santa Fe InstituteSanta FeUSA

Personalised recommendations