Advertisement

Ecosystems

, Volume 21, Issue 3, pp 395–409 | Cite as

Non-native Fish Occurrence and Biomass in 1943 Western Palearctic Lakes and Reservoirs and their Abiotic and Biotic Correlates

  • Carolina Trochine
  • Sandra Brucet
  • Christine Argillier
  • Ignasi Arranz
  • Meryem Beklioglu
  • Lluís Benejam
  • Teresa Ferreira
  • Trygve Hesthagen
  • Kerstin Holmgren
  • Erik Jeppesen
  • Fiona Kelly
  • Teet Krause
  • Martti Rask
  • Pietro Volta
  • Ian J. Winfield
  • Thomas Mehner
Article

Abstract

Invasion of non-native species is considered a major threat to global biodiversity. Here we present a comprehensive overview of the occurrence, richness and biomass contribution of non-native fish species in 1943 standing water bodies from 14 countries of the Western Palearctic, based on standardised fish catches by multi-mesh gillnetting. We expected strong geographical gradients to emerge in the occurrence of non-natives. We further hypothesised that the contribution by non-natives to the local fish community biomass was correlated with local richness and the trophic level of native and non-native species. Non-native fish species occurred in 304 of 1943 water bodies (16%). If the average number of occupied water bodies per country was weighted by number of water bodies per country, the grand mean occurrence of non-natives in Western Palearctic water bodies was 10%. Exotic (non-native to the Palearctic) and translocated (non-native only to parts of the Palearctic) species were found in 164 (8.4%) or 235 (12.1%) of the water bodies, respectively. The occurrence and local richness of non-native fish species increased with temperature, precipitation and lake area and were substantially higher in reservoirs than in natural lakes. High local biomass contributions of non-native species were strongly correlated with low richness of native species and high richness of non-native species, whereas the trophic level of the fish species had only a weak effect. Single non-native species rarely dominated community biomass, but high biomass contributions and thus strong community and ecosystem impacts can be expected if several non-native species accumulate in a water body.

Keywords

invasion biology lake fish communities translocated species exotic species invasion meltdown trophic similarity 

Notes

Acknowledgements

We thank Samo Podgornik for providing the data from the Slovenian lakes and Jörg Freyhof for advice on the status of European fish species. Two anonymous reviewers provided several comments, which helped improving the text. CT is a CONICET researcher. Studies carried out on Turkish lakes were supported by TÜBİTAK-ÇAYDAG (projects 105Y332 and 110Y125), Turkey, and Middle East Technical University (METU)-BAP program (BAP projects between 2009 and 2012). EJ, MB and CA were supported by MARS (Managing Aquatic ecosystems and water Resources under multiple Stress, EU 7th Framework Programme, Contract No.: 603378, http://www.mars-project.eu). KH was supported by the Swedish Environmental Protection Agency (Dnr 10/179) and the Swedish Agency for Marine and Water Management through contract for the research programme WATERS. TK was supported by Environmental Investment Centre KIK, 2014, project nr. 8603. TM and SB were supported by a project of the Deutsche Forschungsgemeinschaft (DFG, Me 1686/7-1).

Supplementary material

10021_2017_156_MOESM1_ESM.docx (379 kb)
Supplementary material 1 (DOCX 379 kb)

References

  1. Alexander TJ, Vonlanthen P, Periat G, Degiorgi F, Raymond JC, Seehausen O. 2015. Estimating whole-lake fish catch per unit effort. Fish Res 172:287–302.CrossRefGoogle Scholar
  2. Alofs KM, Jackson DA. 2014. Meta-analysis suggests biotic resistance in freshwater environments is driven by consumption rather than competition. Ecology 95:3259–70.CrossRefGoogle Scholar
  3. Argillier C, Causse S, Gevrey M, Pedron S, De Bortoli J, Brucet S, Emmrich M, Jeppesen E, Lauridsen T, Mehner T, Olin M, Rask M, Volta P, Winfield IJ, Kelly F, Krause T, Palm A, Holmgren K. 2013. Development of a fish-based index to assess the eutrophication status of European lakes. Hydrobiologia 704:193–211.CrossRefGoogle Scholar
  4. Argillier C, Pronier O, Changeux T. 2002. Fishery management practices in French lakes. In: Cowx IG, Ed. Management and ecology of lake and reservoir fisheries. Oxford: Blackwell Science. p 312–21.Google Scholar
  5. Boll T, Levi EE, Bezirci G, Özulug M, Tavsanoglu UN, Cakiroglu AI, Özcan S, Brucet S, Jeppesen E, Beklioglu M. 2016. Fish assemblage and diversity in lakes of western and central Turkey: role of geo-climatic and other environmental variables. Hydrobiologia 771:31–44.CrossRefGoogle Scholar
  6. Britton JR, Brazier M, Davies GD, Chare SI. 2008. Case studies on eradicating the Asiatic cyprinid Pseudorasbora parva from fishing lakes in England to prevent their riverine dispersal. Aquat Conserv Mar Freshw Ecosyst 18:867–76.CrossRefGoogle Scholar
  7. Brucet S, Pedron S, Mehner T, Lauridsen TL, Argillier C, Winfield IJ, Volta P, Emmrich M, Hesthagen T, Holmgren K, Benejam L, Kelly F, Krause T, Palm A, Rask M, Jeppesen E. 2013. Fish diversity in European lakes: geographical factors dominate over anthropogenic pressures. Freshw Biol 58:1779–93.CrossRefGoogle Scholar
  8. Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque JF, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrrell TD, Vie JC, Watson R. 2010. Global biodiversity: indicators of recent declines. Science 328:1164–8.CrossRefPubMedGoogle Scholar
  9. Catford JA, Jansson R, Nilsson C. 2009. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40.CrossRefGoogle Scholar
  10. CEN. 2015. Water quality—Sampling of fish with multi-mesh gillnets. EN 14757: European Committee for Standardization.Google Scholar
  11. Copp GH, Kovac V, Ojaveer H, Rosenthal H. 2005. The introduction, establishment, dispersal and impact of introduced non-native fishes. J Appl Ichthyol 21:241.CrossRefGoogle Scholar
  12. Cucherousset J, Olden JD. 2011. Ecological impacts of non-native freshwater fishes. Fisheries 36:215–30.CrossRefGoogle Scholar
  13. DAISIE. 2009. Handbook of alien species in Europe. Dordrecht: Springer.Google Scholar
  14. Diekmann M, Brämick U, Lemcke R, Mehner T. 2005. Habitat-specific fishing revealed distinct indicator species in German lowland lake fish communities. J Appl Ecol 42:901–9.CrossRefGoogle Scholar
  15. Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–28.CrossRefGoogle Scholar
  16. Drake JA, Mooney HA. 1989. Biological invasions: a global perspective. Chicester: Wiley.Google Scholar
  17. Elton CS. 1958. The ecology of invasions by plants and animals. London: Methuen. p 18.CrossRefGoogle Scholar
  18. Emmrich M, Winfield IJ, Guillard J, Rustadbakken A, Verges C, Volta P, Jeppesen E, Lauridsen TL, Brucet S, Holmgren K, Argillier C, Mehner T. 2012. Strong correspondence between gillnet catch per unit effort and hydroacoustically derived fish biomass in stratified lakes. Freshw Biol 57:2436–48.CrossRefGoogle Scholar
  19. EU. 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J Eur Commun L 327:1–72.Google Scholar
  20. Feld CK, Birk S, Eme D, Gerisch M, Hering D, Kernan M, Maileht K, Mischke U, Ott I, Pletterbauer F. 2016. Disentangling the effects of land use and geo-climatic factors on diversity in European freshwater ecosystems. Ecol Indic 60:71–83.CrossRefGoogle Scholar
  21. Ficetola GF, Thuiller W, Miaud C. 2007. Prediction and validation of the potential global distribution of a problematic alien invasive species—the American bullfrog. Divers Distrib 13:476–85.CrossRefGoogle Scholar
  22. Field R, Hawkins BA, Cornell HV, Currie DJ, Diniz-Filho JAF, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T. 2009. Spatial species-richness gradients across scales: a meta-analysis. J Biogeogr 36:132–47.CrossRefGoogle Scholar
  23. Fitzgerald DB, Tobler M, Winemiller KO. 2016. From richer to poorer: successful invasion by freshwater fishes depends on species richness of donor and recipient basins. Glob Change Biol 22:2440–50.CrossRefGoogle Scholar
  24. Fox J, Weisberg S. 2011. An R companion to applied regression. Thousands Oaks: Sage.Google Scholar
  25. Gallien L, Münkemüller T, Albert CH, Boulangeat I, Thuiller W. 2010. Predicting potential distributions of invasive species: where to go from here? Divers Distrib 16:331–42.CrossRefGoogle Scholar
  26. Garcia-Berthou E, Alcaraz C, Pou-Rovira Q, Zamora L, Coenders G, Feo C. 2005. Introduction pathways and establishment rates of invasive aquatic species in Europe. Can J Fish Aquat Sci 62:453–63.CrossRefGoogle Scholar
  27. Godinho FN, Ferreira MT, Castro MIPE. 1998. Fish assemblage composition in relation to environmental gradients in Portuguese reservoirs. Aquat Living Resour 11:325–34.CrossRefGoogle Scholar
  28. Gozlan RE, Britton JR, Cowx I, Copp GH. 2010. Current knowledge on non-native freshwater fish introductions. J Fish Biol 76:751–86.CrossRefGoogle Scholar
  29. Hansen GJ, Vander Zanden MJ, Blum MJ, Clayton MK, Hain EF, Hauxwell J, Izzo M, Kornis MS, McIntyre PB, Mikulyuk A. 2013. Commonly rare and rarely common: comparing population abundance of invasive and native aquatic species. Plos One 8:e77415.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Henriksson A, Yu J, Wardle DA, Trygg J, Englund G. 2016a. Weighted species richness outperforms species richness as predictor of biotic resistance. Ecology 97:262–71.CrossRefPubMedGoogle Scholar
  31. Henriksson A, Rydberg C, Englund G. 2016b. Failed and successful intentional introductions of fish species into 821 Swedish lakes. Ecology 97:1364.CrossRefGoogle Scholar
  32. Henriksson A, Wardle DA, Trygg J, Diehl S, Englund G. 2016c. Strong invaders are strong defenders–implications for the resistance of invaded communities. Ecol Lett 19:487–94.CrossRefPubMedGoogle Scholar
  33. Irz P, Argillier C, Oberdorff T. 2004a. Native and introduced fish species richness in French lakes: local and regional influences. Glob Ecol Biogeogr 13:335–44.CrossRefGoogle Scholar
  34. Irz P, Argillier C, Proteau JP. 2004b. Contribution of native and non-native species to fish communities in French reservoirs. Fish Manag Ecol 11:165–72.CrossRefGoogle Scholar
  35. Jeschke JM. 2014. General hypotheses in invasion ecology. Divers Distrib 20:1229–34.CrossRefGoogle Scholar
  36. Kahl U, Hulsmann S, Radke RJ, Benndorf J. 2008. The impact of water level fluctuations on the year class strength of roach: Implications for fish stock management. Limnologica 38:258–68.CrossRefGoogle Scholar
  37. Legendre P. 2014. lmodel2: Model II Regression. R package version 1.7–2.Google Scholar
  38. Legendre P, Legendre LF. 2012. Numerical ecology. Amsterdam: Elsevier.Google Scholar
  39. Leprieur F, Beauchard O, Blanchet S, Oberdorff T, Brosse S. 2008. Fish invasions in the world’s river systems: when natural processes are blurred by human activities. PLoS Biol 6:e28.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Leprieur F, Olden JD, Lek S, Brosse S. 2009a. Contrasting patterns and mechanisms of spatial turnover for native and exotic freshwater fish in Europe. J Biogeogr 36:1899–912.CrossRefGoogle Scholar
  41. Leprieur F, Brosse S, Garcia-Berthou E, Oberdorff T, Olden JD, Townsend CR. 2009b. Scientific uncertainty and the assessment of risks posed by non-native freshwater fishes. Fish Fish 10:88–97.CrossRefGoogle Scholar
  42. Livingstone DM, Lotter AF. 1998. The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with pal sgmaelig; olimnological implications. J Paleolimnol 19:181–98.CrossRefGoogle Scholar
  43. Lowry E, Rollinson EJ, Laybourn AJ, Scott TE, Aiello-Lammens ME, Gray SM, Mickley J, Gurevitch J. 2013. Biological invasions: a field synopsis, systematic review, and database of the literature. Ecol Evol 3:182–96.CrossRefPubMedCentralGoogle Scholar
  44. MacArthur R, Levins R. 1967. Limiting similarity, convergence and divergence of coexisting species. Am Nat 101:377–85.CrossRefGoogle Scholar
  45. McGeoch MA, Butchart SHM, Spear D, Marais E, Kleynhans EJ, Symes A, Chanson J, Hoffmann M. 2010. Global indicators of biological invasion: species numbers, biodiversity impact and policy responses. Divers Distrib 16:95–108.CrossRefGoogle Scholar
  46. Mehner T, Brucet S, Argillier C, Beklioglu M, Ferreira T, Hesthagen T, Holmgren K, Jeppesen E, Kelly F, Krause T, Rask M, Volta P, Winfield IJ, Podgornik S. 2017. Metadata of European lake fishes dataset. Freshw Metadata J 23:1–8.Google Scholar
  47. Mehner T, Diekmann M, Brämick U, Lemcke R. 2005. Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human use intensity. Freshw Biol 50:70–85.CrossRefGoogle Scholar
  48. Mehner T, Emmrich M, Hartwig S. 2014. Spatial predictors of fish species composition in European lowland lakes. Ecography 37:73–9.CrossRefGoogle Scholar
  49. Messager ML, Lehner B, Grill G, Nedeva I, Schmitt O. 2016. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communications 7.Google Scholar
  50. Moyle PB, Light T. 1996. Biological invasions of fresh water: empirical rules and assembly theory. Biol Conserv 78:149–61.CrossRefGoogle Scholar
  51. New M, Lister D, Hulme M, Makin I. 2002. A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25.CrossRefGoogle Scholar
  52. Oberdorff T, Guegan JF, Hugueny B. 1995. Global scale patterns of fish species richness in rivers. Ecography 18:345–52.CrossRefGoogle Scholar
  53. Ormerod SJ, Dobson M, Hildrew AG, Townsend CR. 2010. Multiple stressors in freshwater ecosystems. Freshw Biol 55:1–4.CrossRefGoogle Scholar
  54. Parker IM, Simberloff D, Lonsdale W, Goodell K, Wonham M, Kareiva P, Williamson M, Von Holle B, Moyle P, Byers J. 1999. Impact: toward a framework for understanding the ecological effects of invaders. Biol Invasions 1:3–19.CrossRefGoogle Scholar
  55. Parker JD, Torchin ME, Hufbauer RA, Lemoine NP, Alba C, Blumenthal DM, Bossdorf O, Byers JE, Dunn AM, Heckman RW, Hejda M, Jarosik V, Kanarek AR, Martin LB, Perkins SE, Pysek P, Schierenbeck K, Schloder C, van Klinken R, Vaughn KJ, Williams W, Wolfe LM. 2013. Do invasive species perform better in their new ranges? Ecology 94:985–94.CrossRefPubMedGoogle Scholar
  56. Pauly D, Christensen V. 1995. Primary production required to sustain global fisheries. Nature 374:255–7.CrossRefGoogle Scholar
  57. Persson L, Diehl S, Johansson L, Andersson G, Hamrin SF. 1991. Shifts in fish communities along the productivity gradient of temperate lakes - patterns and the importance of size-structured interactions. J Fish Biol 38:281–93.CrossRefGoogle Scholar
  58. Rahel FJ. 2000. Homogenization of fish faunas across the United States. Science 288:854–6.CrossRefPubMedGoogle Scholar
  59. Ricciardi A. 2003. Predicting the impacts of an introduced species from its invasion history: an empirical approach applied to zebra mussel invasions. Freshw Biol 48:972–81.CrossRefGoogle Scholar
  60. Sagouis A, Cucherousset J, Villeger S, Santoul F, Bouletreau S. 2015. Non-native species modify the isotopic structure of freshwater fish communities across the globe. Ecography 38:979–85.CrossRefGoogle Scholar
  61. Simberloff D, Von Holle B. 1999. Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32.CrossRefGoogle Scholar
  62. Tammi J, Appelberg M, Beier U, Hesthagen T, Lappalainen A, Rask M. 2003. Fish status survey of Nordic lakes: effects of acidification, eutrophication and stocking activity on present fish species composition. Ambio 32:98–105.CrossRefPubMedGoogle Scholar
  63. Toussaint A, Beauchard O, Oberdorff T, Brosse S, Villeger S. 2014. Historical assemblage distinctiveness and the introduction of widespread non-native species explain worldwide changes in freshwater fish taxonomic dissimilarity. Glob Ecol Biogeogr 23:574–84.CrossRefGoogle Scholar
  64. Toussaint A, Beauchard O, Oberdorff T, Brosse S, Villeger S. 2016. Worldwide freshwater fish homogenization is driven by a few widespread non-native species. Biol Invasions 18:1295–304.CrossRefGoogle Scholar
  65. Veer G, Nentwig W. 2015. Environmental and economic impact assessment of alien and invasive fish species in Europe using the generic impact scoring system. Ecol Freshw Fish 24:646–56.CrossRefGoogle Scholar
  66. Vilela B, Villalobos F. 2015. letsR: a new R package for data handling and analysis in macroecology. Methods Ecol Evol 6:1229–34.CrossRefGoogle Scholar
  67. Villeger S, Blanchet S, Beauchard O, Oberdorff T, Brosse S. 2011. Homogenization patterns of the world’s freshwater fish faunas. Proc Natl Acad Sci USA 108:18003–8.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wickham H. 2007. Reshaping data with the reshape package. J Stat Softw 21(12):1–20.CrossRefGoogle Scholar
  69. Wickham H, Francois R. 2016 dplyr: A grammar of data manipulation. R package version 0.5.0Google Scholar
  70. Zeileis A, Kleiber C, Jackman S. 2008. Regression models for count data in R. J Stat Softw 27(8):1–25.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Carolina Trochine
    • 1
  • Sandra Brucet
    • 2
    • 3
  • Christine Argillier
    • 4
  • Ignasi Arranz
    • 2
  • Meryem Beklioglu
    • 5
    • 6
  • Lluís Benejam
    • 2
  • Teresa Ferreira
    • 7
  • Trygve Hesthagen
    • 8
  • Kerstin Holmgren
    • 9
  • Erik Jeppesen
    • 10
    • 11
  • Fiona Kelly
    • 12
  • Teet Krause
    • 13
  • Martti Rask
    • 14
  • Pietro Volta
    • 15
  • Ian J. Winfield
    • 16
  • Thomas Mehner
    • 17
  1. 1.Laboratorio de LimnologíaINIBIOMA CONICET-Universidad Nacional del ComahueBarilocheArgentina
  2. 2.Aquatic Ecology Group, BETA Tecnio CentreUniversity of Vic, Central University of CataloniaCataloniaSpain
  3. 3.Catalan Institution for Research and Advanced Studies, ICREABarcelonaSpain
  4. 4.Irstea UR RECOVERAix En ProvenceFrance
  5. 5.Limnology Laboratory, Department of Biological SciencesMiddle East Technical UniversityAnkaraTurkey
  6. 6.Kemal Kurdaş Ecological Research and Training Stations, Lake EymirMiddle East Technical UniversityAnkaraTurkey
  7. 7.Instituto Superior de AgronomiaUniversity of LisbonLisbonPortugal
  8. 8.Norwegian Institute for Nature ReasearchTrondheimNorway
  9. 9.Department of Aquatic Resources, Institute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
  10. 10.Department of Bioscience and Arctic Research Centre (ARC)Aarhus UniversitySilkeborgDenmark
  11. 11.Sino-Danish Centre for Education and ResearchBeijingChina
  12. 12.Inland Fisheries IrelandDublin 24Ireland
  13. 13.Centre for Limnology IEASEstonian University of Life SciencesTartuEstonia
  14. 14.Natural Resources Institute FinlandJyväskyläFinland
  15. 15.National Research CouncilInstitute of Ecosystem StudyVerbaniaItaly
  16. 16.Lake Ecosystems Group, Centre for Ecology & HydrologyLancaster Environment CentreBailrigg, LancasterUK
  17. 17.Leibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany

Personalised recommendations