, Volume 21, Issue 2, pp 280–296 | Cite as

The Deep Root System of Fagus sylvatica on Sandy Soil: Structure and Variation Across a Precipitation Gradient

  • Ina Christin Meier
  • Florian Knutzen
  • Lucia Muriel Eder
  • Hilmar Müller-Haubold
  • Marc-Oliver Goebel
  • Jörg Bachmann
  • Dietrich Hertel
  • Christoph Leuschner


When applied to climate change-related precipitation decline, the optimal partitioning theory (OPT) predicts that plants will allocate a larger portion of carbon to root growth to enhance the capacity to access and acquire water. However, tests of OPT applied to the root system of mature trees or stands exposed to long-term drying show mixed, partly contradicting, results, indicating an overly simplistic understanding of how moisture affects plant-internal carbon allocation. We investigated the response of the root system (0–240 cm depth) of European beech to long-term decrease in water supply in six mature forests located across a precipitation gradient (855–576 mm mean annual precipitation, MAP). With reference to OPT, we hypothesized that declining precipitation across this gradient would: (H1) cause the profile total of fine root biomass (FRB; roots <2 mm) to increase relative to total leaf mass; (H2) trigger a shift to a shallower root system; and (H3) induce different responses in the depth distributions of different root diameter classes. In contradiction to H1, neither total FRB (0–240 cm) nor the FRB:leaf mass ratio changed significantly with the MAP decrease. The support for H2 was only weak: the 95% rooting depth of fine roots decreased with decreasing MAP, whereas the maximum extension of small coarse roots (2–5 mm) increased, indicating contrasting responses of different root diameter classes. We conclude that long-term decline in water supply leads to only minor adaptive modification with respect to the size and structure of the beech root system, with notable change in the depth extension of some root diameter classes but limited capacity to alter the fine root:leaf mass ratio. It appears that OPT cannot adequately predict C allocation shifts in mature trees when exposed to long-term drying.

Graphical Abstract


coarse roots European beech fine roots mature trees optimal partitioning theory precipitation gradient rooting depth root morphology root-to-shoot ratio 



The authors would like to thank the student assistants for their help with analyzing root biomass depth distributions. We thank the subject-matter editor Christian Giardina and two anonymous referees for helpful comments on earlier versions of the manuscript. This work was supported by a Grant provided by the Ministry for Science and Culture of Lower Saxony (Germany) in the context of the program 'Klimafolgenforschung in Niedersachsen' (KLIFF; climate response research in Lower Saxony) (Grant #MWK 11-76102-51, Subproject #FT54).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10021_2017_148_MOESM1_ESM.pdf (219 kb)
Supplementary material 1 (PDF 219 kb)


  1. Addington RN, Donovan LA, Mitchell RJ, Vose M, Pecot SD, Jack SB, Hacke UG, Sperry JS, Oren R. 2006. Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductance in xeric and mesic habitats. Plant, Cell Environ 29:535–45.CrossRefGoogle Scholar
  2. Aguade D, Poyatas R, Gomez M, Oliva J, Martinez-Vilalta J. 2015. The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.). Tree Physiol 35:229–42.CrossRefPubMedGoogle Scholar
  3. Allen GD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–84.CrossRefGoogle Scholar
  4. Bakker MR, Turpault M-P, Huet S, Nys C. 2008. Root distribution of Fagus sylvatica in a chronosequence in western France. J For Res 13:176–84.CrossRefGoogle Scholar
  5. Bloom AJ, Chapin FSIII, Mooney HA. 1985. Resource limitation in plants—an economic analogy. Annu Rev Ecol Syst 16:363–92.CrossRefGoogle Scholar
  6. Bowman RA, Cole CV. 1978. An exploratory method for fractionation of organic phosphorus from grassland soils. Soil Sci 25:95–101.CrossRefGoogle Scholar
  7. Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N. 1996. Working with Mycorrhizas in Forestry and Agriculture. Canberra: Australian Centre for International Agricultural Research. p 374p.Google Scholar
  8. Buiteveld J, Vendramin GG, Leonardi S, Kamer K, Geburek T. 2007. Genetic diversity and differentiation in European beech (Fagus sylvatica L.) stands varying in management history. For Ecol Manage 247:98–106.CrossRefGoogle Scholar
  9. Carsjens C, Ngoc QN, Guzy J, Knutzen F, Meier IC, Müller M, Finkeldey R, Leuschner C, Polle A. 2014. Intra-specific variations in expression of stress-related genes in beech progenies are stronger than drought-induced responses. Tree Physiol 34:1348–61.CrossRefPubMedGoogle Scholar
  10. Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze E-D. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–95.CrossRefPubMedGoogle Scholar
  11. Causin R, Montecchio L, Mutto Accordi S. 1996. Probability of ectomycorrhizal infection in a declining stand of common oak. Ann Sci For 53:743–52.CrossRefGoogle Scholar
  12. Chapin FSIII, Autumn K, Pugnaire F. 1993. Evolution of suites of traits in response to environmental stress. Am Nat 142:S78–92.CrossRefGoogle Scholar
  13. Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R et al. 2012. Global convergence in the vulnerability of forests to drought. Nature 491:752.PubMedGoogle Scholar
  14. Dawson TE. 1993. Hydraulic lift and water use by plants—implications for water-balance, performance and plant–plant interactions. Oecologia 95:565–74.CrossRefPubMedGoogle Scholar
  15. Dulamsuren C, Hauck M, Leuschner C. 2010. Recent drought stress leads to growth reductions in Larix sibirica in the western Khentey, Mongolia. Glob Change Biol 16:3024–35.Google Scholar
  16. Finér L, Helmisaari H-S, Lõhmus K, Majdi H, Brunner I, Børja I et al. 2007. Variation in fine root biomass of three European tree species: beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst 141:394–405.CrossRefGoogle Scholar
  17. Friedlingstein P, Joel G, Field CB, Fung IY. 1999. Toward an allocation scheme for global terrestrial carbon models. Glob Change Biol 5:755–70.CrossRefGoogle Scholar
  18. Goebel M-O, Woche SK, Abraham PM, Schaumann GE, Bachmann J. 2013. Water repellency enhances the deposition of negatively charged hydrophilic colloids in a water-saturated sand matrix. Colloids Surf A 431:150–60.CrossRefGoogle Scholar
  19. Granier A, Reichstein M, Bréda N, Janssens IA, Falge E, Ciais P et al. 2007. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric For Meteorol 143:123–45.CrossRefGoogle Scholar
  20. Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ. 2008. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol 180:673–83.CrossRefPubMedGoogle Scholar
  21. Hertel D, Strecker T, Müller-Haubold H, Leuschner C. 2013. Fine root biomass and dynamics in beech forests across a precipitation gradient – is optimal resource partitioning theory applicable to water-limited mature trees? J Ecol 101:1183–200.CrossRefGoogle Scholar
  22. Hertel D. 1999. Das Feinwurzelsystem von Rein- und Mischbeständen der Rotbuche: Struktur, Dynamik und interspezifische Konkurrenz. Dissertationes Botanicae, 317. Stuttgart: Gebrüder Bornträger.Google Scholar
  23. IUSS, Isric, FAO. 2006. World reference base for soil resources 2006. A framework for international classification, correlation and communication. World Soil 103:1–145.Google Scholar
  24. Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411.CrossRefPubMedGoogle Scholar
  25. Jobbágy EG, Jackson RB. 2001. The distribution of soil nutrients with depth: global patterns and imprints of plants. Biogeochemistry 53:51–77.CrossRefGoogle Scholar
  26. Joslin JD, Wolfe MH, Hanson PJ. 2000. Effects of altered water regimes on forest root systems. New Phytol 147:117–29.CrossRefGoogle Scholar
  27. Jump AS, Hunt JM, Peñuelas J. 2006. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Change Biol 12:2163–74.CrossRefGoogle Scholar
  28. Kalisz PJ, Zimmermann RW, Muller RN. 1987. Root density, abundance, and distribution in mixed mesophytic forest of eastern Kentucky. Soil Sci Soc Am J 51:220–5.CrossRefGoogle Scholar
  29. Knutzen F, Meier IC, Leuschner C. 2015. Does reduced precipitation trigger physiological and morphological drought adaptations in European beech (Fagus sylvatica L.)? Comparing provenances across a precipitation gradient. Tree Physiol 35:949–63.CrossRefPubMedGoogle Scholar
  30. Knutzen F, Dulamsuren C, Meier IC, Leuschner C. 2017. Recent climate warming-related growth decline impairs European beech in the center of its distribution range. Ecosystems. doi: 10.1007/s10021-017-0128-x.Google Scholar
  31. Kozlowski TT, Pallardy SG. 2002. Acclimation and adaptive responses of woody plants to environmental stresses. Bot Rev 68:270–334.CrossRefGoogle Scholar
  32. Ladefoged K. 1939. Untersuchungen über die Periodizität im Ausbruch und Längenwachstum der Wurzel. Forstl Forsøgsv Danm 16:1–256.Google Scholar
  33. Leuschner C, Hertel D. 2003. Fine root biomass of temperate forests in relation to soil acidity and fertility, climate, age and species. In: Esser K, Lüttge U, Beyschlag W, Hellwig F, Eds. Progress in Botany, Vol. 64. Berlin: Springer. p 405–38.CrossRefGoogle Scholar
  34. Leuschner C, Backes K, Hertel D, Schipka F, Schmitt U, Terborg O, Runge M. 2001. Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. For Ecol Manage 149:33–46.CrossRefGoogle Scholar
  35. Leuschner C, Hertel D, Schmid I, Koch O, Muhs A, Hölscher D. 2004. Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant Soil 258:43–56.CrossRefGoogle Scholar
  36. Magnani F, Mencuccini M, Grace J. 2000. Age-related decline in stand productivity: the role of structural acclimation under hydraulic constraints. Plant Cell Environ 23:251–63.CrossRefGoogle Scholar
  37. Meier IC, Leuschner C. 2008a. Genotypic variation and phenotypic plasticity in the drought response of fine roots of European beech. Tree Physiol 28:297–309.CrossRefPubMedGoogle Scholar
  38. Meier IC, Leuschner C. 2008b. The belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Glob Change Biol 14:2081–95.CrossRefGoogle Scholar
  39. Murphy J, Riley JP. 1962. A modified single-solution method for determination of phosphate in natural waters. Anal Chim Acta 27:31–6.CrossRefGoogle Scholar
  40. Nepstad D, de Carvalho C, Davidson E. 1994. The role of deep roots in the hydrological cycles of Amazonian forests and pastures. Nature 372:666–9.CrossRefGoogle Scholar
  41. Oppelt AL, Kurth W, Jentschke G, Godbold DL. 2005. Contrasting rooting patterns of some arid-zone fruit tree species from Botswana—I. Fine root distribution. Agrofor Syst 64:1–11.CrossRefGoogle Scholar
  42. Parker MM, van Lear DH. 1996. Soil heterogeneity and root distribution of mature loblolly pine stands in Piedmont soils. Soil Sci Soc Am J 60:1920–5.CrossRefGoogle Scholar
  43. Persson H. 1978. Root dynamics in a young Scots pine stand in central Sweden. Oikos 30:508–19.CrossRefGoogle Scholar
  44. Pregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak DR. 1998. Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol 18:665–70.CrossRefPubMedGoogle Scholar
  45. Raison R, Connell M, Khanna P. 1987. Methodology for studying fluxes of soil mineral-N in situ. Soil Biol Biochem 19:521–30.CrossRefGoogle Scholar
  46. Richards J, Caldwell M. 1987. Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486–9.CrossRefPubMedGoogle Scholar
  47. Salmon Y, Torres-Ruiz JM, Poyatos R, Martinzez-Vilalta J, Meir P, Cochard H, Mencuccini M. 2015. Balancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine. Plant Cell Environ 38:2575–88.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Santantonio D, Hermann RK. 1985. Standing crop, production, and turnover of fine roots on dry, moderate, and wet sites of mature Douglas-fir in western Oregon. Ann Sci For 42:113–42.CrossRefGoogle Scholar
  49. Sardans J, Peñuelas J. 2014. Hydraulic redistribution by plants and nutrient stoichiometry: shifts under global change. Ecohydrology 7:1–20.CrossRefGoogle Scholar
  50. Schall P, Lodige C, Beck M, Ammer C. 2012. Biomass allocation to roots and shoots is more sensitive to shade and drought in European beech than in Norway spruce seedlings. For Ecol Manage 266:246–53.CrossRefGoogle Scholar
  51. Schenk HJ, Jackson RB. 2002. The global biogeography of roots. Ecol Monogr 72:311–28.CrossRefGoogle Scholar
  52. Schenk HJ, Jackson RB. 2005. Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126:129–40.CrossRefGoogle Scholar
  53. Schuldt B, Knutzen F, Delzon S, Jansen S, Müller-Haubold H, Burlett R, Clough Y, Leuschner C. 2016. How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? New Phytol 210:443–58.CrossRefPubMedGoogle Scholar
  54. Sibbesen E. 1977. A simple ion-exchange resin procedure for extracting plant-available elements from soil. Plant Soil 46:665–9.CrossRefGoogle Scholar
  55. Soil Survey Staff. 1999. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. Washington: Natural Resources Conservation Service, USDA.Google Scholar
  56. Tückmantel T, Leuschner C, Preusser S, Kandeler E, Angst G, Mueller CW, Meier IC. 2017. Root exudation patterns in a beech forest: dependence on soil depth, root morphology, and environment. Soil Biol Biochem 107:188–97.CrossRefGoogle Scholar
  57. Vergani C, Schwarz M, Cohen D, Thormann JJ, Bischetti GB. 2014. Effects of root tensile force and diameter distribution variability on root reinforcement in the Swiss and Italian Alps. Can J For Res 44:1426–40.CrossRefGoogle Scholar
  58. Vogt KA, Persson H. 1991. Measuring growth and development of roots. In: Lassoie JP, Hinckley TM, Eds. Techniques and Approaches in Forest Tree Ecophysiology. Boca Raton: CRC. p 477–501.Google Scholar
  59. Wilson JB. 1988. A review of the evidence on the control of shoot:root ratio, in relation to models. Ann Bot 61:433–49.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ina Christin Meier
    • 1
  • Florian Knutzen
    • 1
  • Lucia Muriel Eder
    • 1
    • 2
    • 4
  • Hilmar Müller-Haubold
    • 1
  • Marc-Oliver Goebel
    • 3
  • Jörg Bachmann
    • 3
  • Dietrich Hertel
    • 1
  • Christoph Leuschner
    • 1
  1. 1.Plant Ecology, Albrecht von Haller Institute for Plant SciencesUniversity of GoettingenGoettingenGermany
  2. 2.Soil and Hydraulic Geography, Faculty of GeographyUniversity of MarburgMarburg/LahnGermany
  3. 3.Institute for Soil ScienceUniversity of HannoverHannoverGermany
  4. 4.Max Planck Institute for BiogeochemistryJenaGermany

Personalised recommendations