, Volume 20, Issue 8, pp 1436–1453 | Cite as

Land Surface Phenology in the Tropics: The Role of Climate and Topography in a Snow-Free Mountain

  • Annia Susin StreherEmail author
  • João Francisco Ferreira Sobreiro
  • Leonor Patrícia Cerdeira Morellato
  • Thiago Sanna Freire Silva


Leaf phenology represents a major temporal component of ecosystem functioning, and understanding the drivers of seasonal variation in phenology is essential to understand plant responses to climate change. We assessed the patterns and drivers of land surface phenology, a proxy for leafing phenology, for the meridional Espinhaço Range, a South American tropical mountain comprising a mosaic of savannas, dry woodlands, montane vegetation and moist forests. We used a 14-year time series of MODIS/NDVI satellite images, acquired between 2001 and 2015, and extracted phenological indicators using the TIMESAT algorithm. We obtained precipitation data from the Tropical Rainfall Measuring Mission, land surface temperature from the MODIS MOD11A2 product, and cloud cover frequency from the MODIS MOD09GA product. We also calculated the topographic wetness index and simulated clear-sky radiation budgets based on the SRTM elevation model. The relationship between phenology and environmental drivers was assessed using general linear models. Temporal displacement in the start date of the annual growth season was more evident than variations in season length among vegetation types, indicating a possible temporal separation in the use of resources. Season length was inversely proportional to elevation, decreasing 1.58 days per 100 m. Green-up and senescence rates were faster where annual temperature amplitude was higher. We found that water and light availability, modulated by topography, are the most likely drivers of land surface phenology in the region, determining the start, end and length of the growing season. Temperature had an important role in determining the rates of leaf development and the strength of vegetation seasonality, suggesting that tropical vegetation is also sensitive to latitudinal temperature changes, regardless of the elevational gradient. Our work improves the current understanding of phenological strategies in the seasonal tropics and emphasizes the importance of topography in shaping light and water availability for leaf development in snow-free mountains.


land surface phenology seasonal environments topoclimate tropical mountain environmental drivers phenological indicators 



The authors thank Lars Elkhund and Per Jönsson for the invaluable help running TIMESAT and Dr. Jeffrey Hicke and the two anonymous reviewers for comments that improved the quality of this article. Our research was supported by the grant #2013/50155-0, São Paulo Research Foundation (FAPESP) and Microsoft Research Institute, and AS Streher receives a FAPESP scholarship (Grant #2015/17534-3 and BEPE Grant #2016/00757-2). LPCM and TSFS receive research productivity grants from CNPq (#310761/2014-0 and #310144/2015-9). We are very thankful to our colleagues from the Ecosystem Dynamics Observatory (EcoDyn) and the Phenology Lab for the helpful insights and discussions.

Supplementary material

10021_2017_123_MOESM1_ESM.pdf (388 kb)
Supplementary material 1 (PDF 387 kb)


  1. Archibald S, Scholes RJ. 2007. Leaf green-up in a semi-arid African savanna -separating tree and grass responses to environmental cues. J Veg Sci 18:583–94.Google Scholar
  2. Beven KJ, Kirbk MJ. 1979. A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69.CrossRefGoogle Scholar
  3. Bi J, Knyazikhin Y, Choi S, Park T, Barichivich J, Ciais P, Fu R, Ganguly S, Hall F, Hilker T, Huete A, Jones M, Kimball J, Lyapustin AI, Mõttus M, Nemani RR, Piao S, Poulter B, Saleska SR, Saatchi SS, Xu L, Zhou L, Myneni RB. 2015. Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests. Environ Res Lett 10:64014.CrossRefGoogle Scholar
  4. Borchert R, Calle Z, Strahler AH, Baertschi A, Magill RE, Broadhead JS, Kamau J, Njoroge J, Muthuri C. 2015. Insolation and photoperiodic control of tree development near the equator. New Phytol 205:7–13.CrossRefPubMedGoogle Scholar
  5. Borchert R, Renner SS, Calle Z, Navarrete D, Tye A, Gautier L, Spichiger R, von Hildebrand P. 2005. Photoperiodic induction of synchronous flowering near the Equator. Nature 433:627–9.CrossRefPubMedGoogle Scholar
  6. Borchert R, Rivera G, Hagnauer W. 2002. Modification of Vegetative Phenology in a Tropical Semi-deciduous Forest by Abnormal Drought and Rain1. Biotropica 34:27–39.CrossRefGoogle Scholar
  7. Borchet R, Rivera G, Hagnauer W. 2002. Modification of Vegetative Phenology in a Tropical Semi-deciduous Forest by Abnormal Drought and Rain. Biotropica 4:27–39.CrossRefGoogle Scholar
  8. Briggs JM, Knapp AK. 1995. Interannual variability in primary production in tallgrass prairie: climate, soil moisture, topographic position, and fire as determinants of aboveground biomass. Am J Bot 82:1024–30.CrossRefGoogle Scholar
  9. Burnham KP, Anderson DR. 2004. Model Selection and Multimodel Inference. (Burnham KP, Anderson DR, editors.). New York, NY: Springer New YorkGoogle Scholar
  10. Calle Z, Schlumpberger BO, Piedrahita L, Leftin A, Hammer SA, Tye A, Borchert R. 2010. Seasonal variation in daily insolation induces synchronous bud break and flowering in the tropics. Trees - Struct Funct 24:865–77.CrossRefGoogle Scholar
  11. Carvalho LMV, Jones C, Liebmann B. 2004. The South Atlantic Convergence Zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim 17:88–108.CrossRefGoogle Scholar
  12. Chambers LE, Altwegg R, Barbraud C, Barnard P, Beaumont LJ, Crawford RJM, Durant JM, Hughes L, Keatley MR, Low M, Morellato PC, Poloczanska ES, Ruoppolo V, Vanstreels RET, Woehler EJ, Wolfaardt AC. 2013. Phenological Changes in the Southern Hemisphere. Hérault B, editor. PLoS One 8:e75514.Google Scholar
  13. Cleland EE, Chuine I, Menzel A, Mooney HA, Schwarz M. 2007. Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–65.CrossRefPubMedGoogle Scholar
  14. Coelho MS, Fernandes GW, Pacheco P, Diniz V, Meireles A, Santos RM dos, Carvalho FA, Negreiros D. 2016. Archipelago of Montane Forests Surrounded by Rupestrian Grasslands: New Insights and Perspectives. In: Fernandes GW, editor. Ecology and conservation of mountain top grasslands in Brazil. Springer International Publishing. pp 129–56.Google Scholar
  15. Coley PD. 1988. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74:531–6.CrossRefPubMedGoogle Scholar
  16. Colwell RK, Brehm G, Cardelus CL, Gilman AC, Longino JT. 2008. Global warming, elevational range Shifts, and lowland biotic attrition in the wet tropics. Science (80) 322:258–61.Google Scholar
  17. Davies TJ, Wolkovich EM, Kraft NJB, Salamin N, Allen JM, Ault TR, Betancourt JL, Bolmgren K, Cleland EE, Cook BI, Crimmins TM, Mazer SJ, Mccabe GJ, Pau S, Regetz J, Schwartz MD, Travers SE. 2013. Phylogenetic conservatism in plant phenology. J Ecol 101:1520–30.CrossRefGoogle Scholar
  18. de Beurs KM, Henebry GM. 2004. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sens Environ 89:497–509.CrossRefGoogle Scholar
  19. de Lima RAF, Mori DP, Pitta G, Melito MO, Bello C, Magnago LF, Zwiener VP, Saraiva DD, Marques MCM, de Oliveira AA, Prado PI. 2015. How much do we know about the endangered Atlantic Forest? Reviewing nearly 70 years of information on tree community surveys. Biodivers Conserv 24:2135–48.CrossRefGoogle Scholar
  20. Fernandes GW. 2016. Ecology and conservation of mountaintop grasslands in Brazil. 1. (Fernandes GW, editor.). Cham: Springer International Publishing.Google Scholar
  21. Fu P, Rich PM. 2002. A geometric solar radiation model with applications in agriculture and forestry. Comput Electron Agric 37:25–35.CrossRefGoogle Scholar
  22. Galvão LS, Breunig FM, Teles TS, Gaida W, Balbinot R. 2016. Investigation of terrain illumination effects on vegetation indices and VI-derived phenological metrics in subtropical deciduous forests. GIScience Remote Sens 53:360–81.CrossRefGoogle Scholar
  23. Giulietti AM, Pirani JR. 1988. Patterns of geographic distribution of some plant species from the Espinhaço Range, Minas Gerais and Bahia, Brazil. In: Vanzolini PE, Heyer WR, editors. Proceedings of a workshop on Neotropical Distribution Patterns. Academia Brasileira de Ciências, Rio de Janeiro. pp 39–69.Google Scholar
  24. Gotelli NJ, Graves G. 1996. The temporal niche. Null Models in Ecology. Washington, District of Columbia: Smithsonian Institution Press. p 95–111.Google Scholar
  25. Graham EA, Mulkey SS, Kitajima K, Phillips NG, Wright SJ. 2003. Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. Proc Natl Acad Sci 100:572–6.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Guan K, Pan M, Li H, Wolf A, Wu J, Medvigy D, Caylor KK, Sheffield J, Wood EF, Malhi Y, Liang M, Kimball JS, Saleska SR, Berry J, Joiner J, Lyapustin AI. 2015. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat Geosci 8:284–9.CrossRefGoogle Scholar
  27. Henebry GM, de Beurs KM. 2013. Remote Sensing of Land Surface Phenology: A Prospectus. In: Schwartz MD, editor. Phenology: An Integrative Environmental Science. Dordrecht: Springer Netherlands. pp 385–411.Google Scholar
  28. Hudson Dunn A, de Beurs KM. 2011. Land surface phenology of North American mountain environments using moderate resolution imaging spectroradiometer data. Remote Sens Environ 115:1220–33.CrossRefGoogle Scholar
  29. Huete A, Justice C, Van Leeuwen WJD. 1999. Modis Vegetation Index, Algorithm Theoretical Basis Document.Google Scholar
  30. Hwang T, Band LE, Miniat CF, Song C, Bolstad PV, Vose JM, Love JP. 2014. Divergent phenological response to hydroclimate variability in forested mountain watersheds. Glob Chang Biol 20:2580–95.CrossRefPubMedGoogle Scholar
  31. Inouye DW, Wielgolaski FE. 2013. Phenology at high altitudes. In: Schwartz MD, editor. Phenology: An Integrative Environmental Science. Dordrecht: Springer Netherlands. pp 249–72.Google Scholar
  32. Jolly WM, Nemani R, Running SW. 2005. A generalized, bioclimatic index to predict foliar phenology in response to climate. Glob Chang Biol 11:619–32.CrossRefGoogle Scholar
  33. Jones MO, Kimball JS, Nemani RR. 2014. Asynchronous Amazon forest canopy phenology indicates adaptation to both water and light availability. Environ Res Lett 9:124021.CrossRefGoogle Scholar
  34. Jonsson P, Eklundh L. 2002. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans Geosci Remote Sens 40:1824–32.CrossRefGoogle Scholar
  35. Jönsson P, Eklundh L. 2004. TIMESAT—a program for analyzing time-series of satellite sensor data. Comput Geosci 30:833–45.CrossRefGoogle Scholar
  36. Klisch A, Atzberger C. 2016. Operational drought monitoring in Kenya using MODIS NDVI time series. Remote Sens 8:267.CrossRefGoogle Scholar
  37. Knapp AK, Seastedt TR. 1986. Detritus accumulation limits productivity of tallgrass prairie. Bioscience 36:662–8.CrossRefGoogle Scholar
  38. Körner C. 2006. Significance of temperature in plant life. In: James I.L. Morison, Michael D. Morecroft, editors. Plant Growth and Climate Change. Oxford, UK: Blackwell Publishing Ltd. pp 48–69.Google Scholar
  39. Krishnaswamy J, John R, Joseph S. 2014. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob Chang Biol 20:203–15.CrossRefPubMedGoogle Scholar
  40. Lers A. 2007. Environmental regulation of leaf senescence. In: Gan Susheng, Ed. Senescence Processes in Plants. Oxford: Blackwell Publishing Ltd. p 108–44.CrossRefGoogle Scholar
  41. Lima ALA, Rodal MJN. 2010. Phenology and wood density of plants growing in the semi-arid region of northeastern Brazil. J Arid Environ 74:1363–73.CrossRefGoogle Scholar
  42. Lopes SDF, Schiavini I, Oliveira AP, Vale VS. 2012. An ecological comparison of floristic composition in seasonal semideciduous forest in southeast Brazil: implications for conservation. Int J For Res 2012:1–14.Google Scholar
  43. Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, Harrison SP, Hurlbert AH, Knowlton N, Lessios HA, McCain CM, McCune AR, McDade LA, McPeek MA, Near TJ, Price TD, Ricklefs RE, Roy K, Sax DF, Schluter D, Sobel JM, Turelli M. 2007. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–31.CrossRefPubMedGoogle Scholar
  44. Morellato LPC, Alberton B, Alvarado ST, Borges B, Buisson E, Camargo MGG, Cancian LF, Carstensen DW, Escobar DFE, Leite PTP, Mendoza I, Rocha NMWB, Soares NC, Silva TSF, Staggemeier VG, Streher AS, Vargas BC, Peres CA. 2016. Linking plant phenology to conservation biology. Biol Conserv 195:60–72.CrossRefGoogle Scholar
  45. Morellato LPC, Camargo MGG, Gressler E. 2013. A review of plant phenology in South and Central America. In: Schwartz MD, editor. Phenology: An Integrative Environmental Science. Dordrecht: Springer Netherlands. pp 91–113.Google Scholar
  46. Morellato LPC, Leitão-Filho HF. 1992. Padrões de frutificação e dispersão na Serra do Japi. In: Morellato LPC, Ed. Historia natural da Serra do Japi: ecologia e preservacao de uma area florestal no Sudeste do Brasil. Editora da Unicamp/Fapesp: Campinas. p 112–40.Google Scholar
  47. Morellato LPC, Rodrigues R, Leitão-Filho H, Joly CA. 1989. Estudo comparativo da fenologia de espécies arbóreas de floresta de altitude e floresta mesófila semidecídua na Serra do Japi, Jundiaí, São Paulo. Rev Bras Bot 12:85–98.Google Scholar
  48. Morellato LPC, Talora DC, Takahasi A, Bencke CC, Romera EC, Zipparro VB. 2000. Phenology of Atlantic rain forest trees: A comparative study. Biotropica 32:811–23.CrossRefGoogle Scholar
  49. Myneni RB, Yang W, Nemani RR, Huete AR, Dickinson RE, Knyazikhin Y, Didan K, Fu R, Negron Juarez RI, Saatchi SS, Hashimoto H, Ichii K, Shabanov NV, Tan B, Ratana P, Privette JL, Morisette JT, Vermote EF, Roy DP, Wolfe RE, Friedl MA, Running SW, Votava P, El-Saleous N, Devadiga S, Su Y, Salomonson VV. 2007. Large seasonal swings in leaf area of Amazon rainforests. Proc Natl Acad Sci 104:4820–3.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Nippert JB, Knapp AK, Briggs JM. 2006. Intra-annual rainfall variability and grassland productivity: can the past predict the future? Plant Ecol 184:65–74.CrossRefGoogle Scholar
  51. Oliveira RS, Abrahão A, Pereira C, Teodoro GS, Mauro Brum S, Alcantara U, Lambers H. 2016. Ecophysiology of Campos Rupestres Plants. In: Fernandes GW, editor. Ecology and conservation of mountain top grasslands in Brazil. Springer International Publishing. pp 228–62.Google Scholar
  52. Pau S, Wolkovich EM, Cook BI, Nytch CJ, Regetz J, Zimmerman JK, Joseph Wright S. 2013. Clouds and temperature drive dynamic changes in tropical flower production. Nat Clim Chang 3:838–42.CrossRefGoogle Scholar
  53. Peñuelas J, Rutishauser T, Filella I. 2009. Phenology feedbacks on climate change. Science 324:887–8.CrossRefPubMedGoogle Scholar
  54. Pezzini FF, Ranieri BD, Brandão DO, Fernandes GW, Quesada M, Espírito-Santo MM, Jacobi CM. 2014. Changes in tree phenology along natural regeneration in a seasonally dry tropical forest. Plant Biosyst - An Int J Deal with all Asp Plant Biol 148:965–74.CrossRefGoogle Scholar
  55. Polgar CA, Primack RB. 2011. Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol 191:926–41.CrossRefPubMedGoogle Scholar
  56. Portillo-Quintero CA, Sánchez-Azofeifa GA. 2010. Extent and conservation of tropical dry forests in the Americas. Biol Conserv 143:144–55.CrossRefGoogle Scholar
  57. Reed BC, Schwartz MD, Xiao X. 2009. Remote Sensing Phenology. In: Noormets A, editor. Phenology of Ecosystem Processes: Applications in Global Change Research. New York, NY: Springer New York. pp 231–46.Google Scholar
  58. Reich PB, Borchert R. 1984. Water Stress and Tree Phenology in a Tropical Dry Forest in the Lowlands of Costa Rica. J Ecol 72:61.CrossRefGoogle Scholar
  59. Reich PB, Peterson DW, Wedin DA, Wrage K. 2001. Fire and vegetation effects on productivity and nitorgen cycling across a forest-grassland continuum. Ecology 82:1703–19.Google Scholar
  60. Rich PM, Dubayah R, Hetrick WA, Saving SC. 1994. Using viewshed models to calculate intercepted solar radiation: applications in ecology. Am Soc Photogramm Remote Sens Tech Pap 524–9.Google Scholar
  61. Richardson AD, Bailey AS, Denny EG, Martin CW, O’Keefe J. 2006. Phenology of a northern hardwood forest canopy. Glob Chang Biol 12:1174–88.CrossRefGoogle Scholar
  62. Rivera G, Elliott S, Caldas LS, Nicolossi G, Coradin VTR, Borchert R. 2002. Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees 16:445–56.CrossRefGoogle Scholar
  63. Rocha NMWB, Carstensen DW, Wilson Fernandes G, Le Stradic S, Buisson E, Morellato LPC. 2016. Phenology patterns across a rupestrian grassland altitudinal gradient. In: Fernandes GW, editor. Ecology and conservation of mountain top grasslands in Brazil. Springer International Publishing. pp 275–90.Google Scholar
  64. Rossatto DR, Silva LCR, Sternberg LSL, Franco AC. 2014. Do woody and herbaceous species compete for soil water across topographic gradients? Evidence for niche partitioning in a Neotropical savanna. South African J Bot 91:14–18.CrossRefGoogle Scholar
  65. Schaefer CEGR, Corrêa GR, Candido HG, Arruda DM, Nunes JA, Araujo RW, Rodrigues PMS, Filho EIF, Pereira AFS, Brandão PC, NeriCarlos A V. 2016. The physical environment of Rupestrian Grasslands (Campos Rupestres) in Brazil: geological, geomorphological and pedological characteristics, and interplays. In: Fernandes GW, editor. Ecology and conservation of mountain top grasslands in Brazil. Springer International Publishing. pp 15–53.Google Scholar
  66. Schimel DS, Kittel TGF, Knapp AK, Seastedt TR, Knapp AK, Seastedt TR, Parton WJ, Brown VB. 1991. Physiological interactions along resource gradients in a tallgrass prairie. Ecology 72:672–84.CrossRefGoogle Scholar
  67. Silveira FAO, Negreiros D, Barbosa NPU, Buisson E, Carmo FF, Carstensen DW, Conceição A A., Cornelissen TG, Echternacht L, Fernandes GW, Garcia QS, Guerra TJ, Jacobi CM, Lemos-Filho JP, Le Stradic S, Morellato LPC, Neves FS, Oliveira RS, Schaefer CE, Viana PL, Lambers H. 2016. Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil 403:129–52.Google Scholar
  68. Simon MF, Grether R, de Queiroz LP, Skema C, Pennington RT, Hughes CE. 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc Natl Acad Sci 106:20359–64.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Singh KP, Kushwaha CP. 2005. Emerging paradigms of tree phenology in dry tropics. Curr Sci 89:964–75.Google Scholar
  70. Sobreiro JFF, Silva TSF, Streher AS. 2015. Avaliação multi-escala do regime de precipitação da Cadeia do Espinhaço Meridional (Brasil). In: XVII Congresso de Iniciação Científica da Unesp. Rio Claro.Google Scholar
  71. Tannus JLS, Assis MA, Morellato LPC. 2006. Fenologia reprodutiva em campo sujo e campo úmido numa área de Cerrado no sudeste do Brasil, Itirapina - SP. Biota Neotrop 6.Google Scholar
  72. Teles TS, Galvão LS, Breunig FM, Balbinot R, Gaida W. 2015. Relationships between MODIS phenological metrics, topographic shade, and anomalous temperature patterns in seasonal deciduous forests of south Brazil. Int J Remote Sens 36:4501–18.CrossRefGoogle Scholar
  73. Tuck SL, Phillips HRP, Hintzen RE, Scharlemann JPW, Purvis A, Hudson LN. 2014. MODISTools - downloading and processing MODIS remotely sensed data in R. Ecol Evol 4:4658–68.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Tucker CJ. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8:127–50.CrossRefGoogle Scholar
  75. van Leeuwen W, Hartfield K, Miranda M, Meza F. 2013. Trends and ENSO/AAO driven variability in NDVI derived productivity and phenology alongside the Andes mountains. Remote Sens 5:1177–203.CrossRefGoogle Scholar
  76. van Schaik CP, Terborgh JW, Wright SJ. 1993. The phenology of tropical forests: adaptive significance and consequences for primary consumers*. Annu Rev Ecol Syst 24:353–77.CrossRefGoogle Scholar
  77. Vuolo F, Mattiuzzi M, Klisch A, Atzberger C. 2012. Data service platform for MODIS vegetation indices time series processing at BOKU Vienna: current status and future perspectives. In: Michel U, Civco DL, Ehlers M, Schulz K, Nikolakopoulos KG, Habib S, Messinger D, Maltese A, editors. Proc. SPIE 8538, Earth Resources and Environmental Remote Sensing/GIS Applications III. Vol. 8538. p 85380A.Google Scholar
  78. Wright SJ, van Schaik CP. 1994. Light and the phenology of tropical Trees. Am Nat 143:192–9.CrossRefGoogle Scholar
  79. Zimmerman JK, Wright SJ, Calderón O, Pagan MA, Paton S. 2007. Flowering and fruiting phenologies of seasonal and aseasonal neotropical forests: the role of annual changes in irradiance. J Trop Ecol 23:231.CrossRefGoogle Scholar
  80. Zuur AF, Ieno EN, Elphick CS. 2010. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Annia Susin Streher
    • 1
    • 2
    Email author
  • João Francisco Ferreira Sobreiro
    • 2
  • Leonor Patrícia Cerdeira Morellato
    • 1
    • 3
  • Thiago Sanna Freire Silva
    • 1
    • 2
  1. 1.Universidade Estadual Paulista (Unesp), Instituto de BiociênciasRio ClaroBrazil
  2. 2.Ecosystem Dynamics ObservatoryUniversidade Estadual Paulista (Unesp), Instituto de Geociências e Ciências ExatasRio ClaroBrazil
  3. 3.Laboratório de FenologiaUniversidade Estadual Paulista (Unesp), Instituto de BiociênciasRio ClaroBrazil

Personalised recommendations