Ecosystems

, Volume 20, Issue 3, pp 458–476

Marine Ecosystems as Complex Adaptive Systems: Emergent Patterns, Critical Transitions, and Public Goods

20th Anniversary Paper

Abstract

Complex adaptive systems provide a unified framework for explaining ecosystem phenomena. In the past 20 years, complex adaptive systems have been sharpened from an abstract concept into a series of tools that can be used to solve concrete problems. These advances have been led by the development of new techniques for coupling ecological and evolutionary dynamics, for integrating dynamics across multiple scales of organization, and for using data to infer the complex interactions among different components of ecological systems. Focusing on the development and usage of these new methods, we discuss how they have led to an improved understanding of three universal features of complex adaptive systems, emergent patterns; tipping points and critical phenomena; and cooperative behavior. We restrict our attention primarily to marine ecosystems, which provide numerous successful examples of the application of complex adaptive systems. Many of these are currently undergoing dramatic changes due to anthropogenic perturbations, and we take the opportunity to discuss how complex adaptive systems can be used to improve the management of public goods and to better preserve critical ecosystem services.

Keywords

complex adaptive systems public goods emergent patterns critical transitions marine ecosystems evolution of cooperation theoretical ecology 

References

  1. Almany G, Connolly S, Heath D, Hogan J, Jones G, McCook L, Mills M, Pressey R, Williamson D. 2009. Connectivity, biodiversity conservation and the design of marine reserve networks for coral reefs. Coral Reefs 28(2):339–51.CrossRefGoogle Scholar
  2. Andersen KH, Berge T, Gonçalves R, Hartvig M, Heuschele J, Hylander S, Jacobsen NS, Lindemann C, Martens EA, Neuheimer AB et al. 2016. Characteristic sizes of life in the oceans, from bacteria to whales. Annu Rev Mar Sci 8(2016):217–41.CrossRefGoogle Scholar
  3. Anderson PW. 1972. More is different. Science 177(4047):393–6.PubMedCrossRefGoogle Scholar
  4. Armstrong RA. 1994. Grazing limitation and nutrient limitation in marine ecosystems: steady state solutions of an ecosystem model with multiple food chains. Limnol Oceanogr 39(3):597–608.CrossRefGoogle Scholar
  5. Arrow KJ, Cropper ML, Gollier C, Groom B, Heal GM, Newell RG, Nordhaus WD, Pindyck RS, Pizer WA, Portney PR et al. 2014. Should governments use a declining discount rate in project analysis? Rev Environ Econ Policy 8(2):145–63.CrossRefGoogle Scholar
  6. Arthur WB. 1994. Increasing returns and path dependence in the economy. Ann Arbor (MI): University of Michigan Press. p 203.Google Scholar
  7. Axelrod RM. 2006. The evolution of cooperation. New York (NY): Basic books. p 247.Google Scholar
  8. Bak P, Tang C, Wiesenfeld K. 1987. Self-organized criticality: an explanation of the 1/f noise. Phys Rev Lett 59(4):381.PubMedCrossRefGoogle Scholar
  9. Berdahl A, Torney CJ, Ioannou CC, Faria JJ, Couzin ID. 2013. Emergent sensing of complex environments by mobile animal groups. Science 339(6119):574–6.PubMedCrossRefGoogle Scholar
  10. Berry D, Widder S. 2014. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:219.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bialek W, Cavagna A, Giardina I, Mora T, Silvestri E, Viale M, Walczak AM. 2012. Statistical mechanics for natural flocks of birds. Proc Natl Acad Sci 109(13):4786–91.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Boettiger C, Hastings A. 2012a. Early warning signals and the prosecutor’s fallacy. Proc R Soc Lond B Biol Sci 279(1748):2085.Google Scholar
  13. Boettiger C, Hastings A. 2012b. Quantifying limits to detection of early warning for critical transitions. J R Soc Interface 9(75):2527–39.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bruggeman J. 2011. A phylogenetic approach to the estimation of phytoplankton traits. J Phycol 47(1):52–65.PubMedCrossRefGoogle Scholar
  15. Brush ER, Leonard NE, Levin SA. 2016. The content and availability of information affects the evolution of social-information gathering strategies. Theor Ecol 9:455–76.Google Scholar
  16. Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, No D, Liu H, Kinnebrew M, Viale A et al. 2015. Precision microbiome reconstitution restores bile acid mediated resistance to clostridium difficile. Nature 517(7533):205–8.PubMedCrossRefGoogle Scholar
  17. Bunin G. 2016. Interaction patterns and diversity in assembled ecological communities. arXiv preprint arXiv:1607.04734.
  18. Carpenter SR, Brock WA. 2006. Rising variance: a leading indicator of ecological transition. Ecol Lett 9(3):311–18.PubMedCrossRefGoogle Scholar
  19. Carpenter SR, Ludwig D, Brock WA. 1999. Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9(3):751–71.CrossRefGoogle Scholar
  20. Carpenter SR, Press MC, Huntly NJ, Levin SA. 2001. Alternate states of ecosystems: evidence and some implications. In: Ecology: achievement and challenge: the 41st symposium of the British Ecological Society sponsored by the Ecological Society of America held at Orlando, Florida, USA, 10–13 April 2000, pp. 357–83.Google Scholar
  21. Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R, Stefanini F, Viale M. 2010. Scale-free correlations in starling flocks. Proc Natl Acad Sci 107(26):11865–70.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chapman S, Cowling TG. 1970. The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Cambridge (UK): Cambridge University Press.Google Scholar
  23. Clark JR, Lenton TM, Williams HT, Daines SJ. 2013. Environmental selection and resource allocation determine spatial patterns in picophytoplankton cell size. Limnol Oceanogr 58(3):1008–22.CrossRefGoogle Scholar
  24. Clauset A, Shalizi CR, Newman ME. 2009. Power-law distributions in empirical data. SIAM Rev 51(4):661–703.CrossRefGoogle Scholar
  25. Cordero OX, Ventouras LA, DeLong EF, Polz MF. 2012. Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc Natl Acad Sci 109(49):20059–64.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Couzin ID, Krause J. 2003. Self-organization and collective behavior in vertebrates. Adv Study Behav 32:1–75.CrossRefGoogle Scholar
  27. Couzin ID, Krause J, Franks NR, Levin SA. 2005. Effective leadership and decision-making in animal groups on the move. Nature 433(7025):513–16.PubMedCrossRefGoogle Scholar
  28. Crépin AS. 2007. Using fast and slow processes to manage resources with thresholds. Environ Resour Econ 36(2):191–213.CrossRefGoogle Scholar
  29. Czirók A, Vicsek T. 2001. Collective motion. In: Vicsek T (ed) Fluctuations and scaling in biology. Oxford (UK): Oxford University Press. pp. 177–242.Google Scholar
  30. Daines SJ, Clark JR, Lenton TM. 2014. Multiple environmental controls on phytoplankton growth strategies determine adaptive responses of the N:P ratio. Ecol Lett 17(4):414–25.PubMedCrossRefGoogle Scholar
  31. Damore JA, Gore J. 2012. Understanding microbial cooperation. J Theor Biol 299:31–41.PubMedCrossRefGoogle Scholar
  32. Darwin C. 1859. The origin of species. London (UK): Murray, pp. 495.Google Scholar
  33. Datta MS, Sliwerska E, Gore J, Polz MF, Cordero OX. 2016. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat Commun 7:11965. doi:10.1038/ncomms11965.
  34. Diaz RJ, Rosenberg R. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321(5891):926–9.PubMedCrossRefGoogle Scholar
  35. Diekmann O. 2004. A beginner’s guide to adaptive dynamics. Banach Center Publ 63:47–86.Google Scholar
  36. Dietz T. 2005. The Darwinian trope in the drama of the commons: variations on some themes by the Ostroms. J Econ Behav Organ 57(2):205–25.CrossRefGoogle Scholar
  37. Dietz T, Ostrom E, Stern PC. 2003. The struggle to govern the commons. Science 302(5652):1907–12.PubMedCrossRefGoogle Scholar
  38. Drescher K, Dunkel J, Nadell CD, van Teeffelen S, Grnja I, Wingreen NS, Stone HA, Bassler BL. 2016. Architectural transitions in vibrio cholerae biofilms at single-cell resolution. Proc Natl Acad Sci 113(14):E2066–72.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Driscoll WW, Pepper JW. 2010. Theory for the evolution of diffusible external goods. Evolution 64(9):2682–7.PubMedCrossRefGoogle Scholar
  40. Drossel B, McKane AJ, Quince C. 2004. The impact of nonlinear functional responses on the long-term evolution of food web structure. J Theor Biol 229(4):539–48.PubMedCrossRefGoogle Scholar
  41. Dunne JA, Williams RJ, Martinez ND. 2002. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5(4):558–67.CrossRefGoogle Scholar
  42. Eikeset AM, Richter A, Dunlop ES, Dieckmann U, Stenseth NC. 2013. Economic repercussions of fisheries-induced evolution. Proc Natl Acad Sci 110(30):12259–64.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Enquist BJ, Norberg J, Bonser SP, Violle C, Webb CT, Henderson A, Sloat LL, Savage VM. 2015. Chapter nine-scaling from traits to ecosystems: developing a general trait driver theory via integrating trait-based and metabolic scaling theories. Adv Ecol Res 52:249–318.CrossRefGoogle Scholar
  44. Falkowski PG. 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387(6630):272–5.CrossRefGoogle Scholar
  45. Falkowski PG, Fenchel T, Delong EF. 2008. The microbial engines that drive earth’s biogeochemical cycles. Science 320(5879):1034–9.PubMedCrossRefGoogle Scholar
  46. Fenichel N. 1979. Geometric singular perturbation theory for ordinary differential equations. J Differ Equ 31(1):53–98.CrossRefGoogle Scholar
  47. Filotas E, Parrott L, Burton PJ, Chazdon RL, Coates DK, Coll L, Haeussler S, Martin K, Nocentini S, Puettmann KJ. 2014. Viewing forests through the lens of complex systems science. Ecosphere 5(1):1–23.CrossRefGoogle Scholar
  48. Flierl G, Grünbaum D, Levin SA, Olson D. 1999. From individuals to aggregations: the interplay between behavior and physics. J Theor Biol 196(4):397–454.PubMedCrossRefGoogle Scholar
  49. Follows MJ, Dutkiewicz S, Grant S, Chisholm SW. 2007. Emergent biogeography of microbial communities in a model ocean. Science 315(5820):1843–6.PubMedCrossRefGoogle Scholar
  50. Franks PJS. 2009. Planktonic ecosystem models: perplexing parameterizations and a failure to fail. J Plankton Res 31:1299–306.CrossRefGoogle Scholar
  51. Fulton EA, Smith AD, Smith DC, van Putten IE. 2011. Human behaviour: the key source of uncertainty in fisheries management. Fish Fish 12(1):2–17.CrossRefGoogle Scholar
  52. Galbraith ED, Martiny AC. 2015. A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems. Proc Natl Acad Sci 112(27):8199–204.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gardiner CW. 1985. Handbook of stochastic methods, Vol. 3Berlin (DEU): Springer.Google Scholar
  54. Gattuso JP, Magnan A, Billé R, Cheung WWL, Howes EL, Joos F, Allemand D, Bopp L, Cooley SR, Eakin CM, Hoegh-Guldberg O, Kelly RP, Pörtner HO, Rogers AD, Baxter JM, Laffoley D, Osborn D, Rankovic A, Rochette J, Sumaila UR, Treyer S, Turley C. 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349(6243):aac4722. doi:10.1126/science.aac4722.
  55. Geritz SA, Metz JA, Kisdi É, Meszéna G. 1997. Dynamics of adaptation and evolutionary branching. Phys Rev Lett 78(10):2024.CrossRefGoogle Scholar
  56. Gore J, Youk H, Van Oudenaarden A. 2009. Snowdrift game dynamics and facultative cheating in yeast. Nature 459(7244):253–6.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Grimm V, Railsback SF. 2013. Individual-based modeling and ecology. Princeton (NJ): Princeton University Press.Google Scholar
  58. Grünbaum D. 1994. Translating stochastic density-dependent individual behavior with sensory constraints to an Eulerian model of animal swarming. J Math Biol 33(2):139–61.PubMedCrossRefGoogle Scholar
  59. Grünbaum D. 1998. Schooling as a strategy for taxis in a noisy environment. Evol Ecol 12(5):503–22.CrossRefGoogle Scholar
  60. Grünbaum D, Okubo A. 1994. Modelling social animal aggregations. In Frontiers in mathematical biology. Berlin (DEU): Springer. pp. 296–325.Google Scholar
  61. Gunderson LH. 2001. Panarchy: understanding transformations in human and natural systems. Washington (DC): Island Press.Google Scholar
  62. Guttal V, Jayaprakash C. 2008. Changing skewness: an early warning signal of regime shifts in ecosystems. Ecol Lett 11(5):450–60.PubMedCrossRefGoogle Scholar
  63. Hagstrom GI, Levin SA, Martiny AC. 2016. Balance between resource supply and demand determines nutrient limitation of primary productivity in the ocean. doi:10.1101/064543.
  64. Hartvigsen G, Kinzig A, Peterson G. 1998. Complex adaptive systems: use and analysis of complex adaptive systems in ecosystem science: overview of special section. Ecosystems 1(5):427–30.CrossRefGoogle Scholar
  65. Hein A, Rosenthal SB, Hagstrom G, Berdahl A, Torney C, Couzin I. 2015. The evolution of distributed sensing and collective computation in animal populations. eLife 4:10955.CrossRefGoogle Scholar
  66. Heino M. 1998. Management of evolving fish stocks. Can J Fish Aquat Sci 55(8):1971–82.CrossRefGoogle Scholar
  67. Held H, Kleinen T. 2004. Detection of climate system bifurcations by degenerate fingerprinting. Geophys Res Lett 31(23). doi:10.1029/2004GL020972.
  68. Holling CS. 1973. Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23.Google Scholar
  69. Holling CS. 1986. The resilience of terrestrial ecosystems: local surprise and global change. In: Clark WC, Seliger HH (eds) Sustainable development of the biosphere. Cambridge (UK): Cambridge University Press. pp. 292–317.Google Scholar
  70. Jacob F. 1977. Evolution and tinkering. Science 196(4295):1161–6.PubMedCrossRefGoogle Scholar
  71. Katz Y, Tunstrøm K, Ioannou CC, Huepe C, Couzin ID. 2011. Inferring the structure and dynamics of interactions in schooling fish. Proc Natl Acad Sci 108(46):18720–5.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Khandelwal RA, Olivier BG, Röling WF, Teusink B, Bruggeman FJ. 2013. Community flux balance analysis for microbial consortia at balanced growth. PLoS ONE 8(5):e64567.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kiørboe T. 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv Mar Biol 29:1–72.CrossRefGoogle Scholar
  74. Klausmeier CA, Litchman E, Daufresne T, Levin SA. 2004. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429(6988):171–4.PubMedCrossRefGoogle Scholar
  75. Knowlton N. 1992. Thresholds and multiple stable states in coral reef community dynamics. Am Zool 32(6):674–82.CrossRefGoogle Scholar
  76. Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. 2015. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol 11(5):e1004226.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lenton TM. 2011. Early warning of climate tipping points. Nat Clim Change 1(4):201–9.CrossRefGoogle Scholar
  78. Lenton TM, Footitt A, Dlugolecki A, Allianz Gruppe. 2009. Major tipping points in the earth’s climate system and consequences for the insurance sector. Technical report, World Wildlife Fund, Washington (DC).Google Scholar
  79. Levin S. 2003. Complex adaptive systems: exploring the known, the unknown and the unknowable. Bull Am Math Soc 40(1):3–19.CrossRefGoogle Scholar
  80. Levin S, Xepapadeas T, Crépin AS, Norberg J, De Zeeuw A, Folke C, Hughes T, Arrow K, Barrett S, Daily G et al. 2013. Social-ecological systems as complex adaptive systems: modeling and policy implications. Environ Dev Econ 18(02):111–32.CrossRefGoogle Scholar
  81. Levin SA. 1992. The problem of pattern and scale in ecology: the Robert H. MacArthur Award lecture. Ecology 73(6):1943–67.CrossRefGoogle Scholar
  82. Levin SA. 1998. Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1(5):431–6.CrossRefGoogle Scholar
  83. Levin SA. 2014. Public goods in relation to competition, cooperation, and spite. Proc Natl Acad Sci 111(Supplement 3):10838–45.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Levin SA, Barrett S, Aniyar S, Baumol W, Bliss C, Bolin B, Dasgupta P, Ehrlich P, Folke C, Gren IM et al. 1998. Resilience in natural and socioeconomic systems. Environ Dev Econ 3(02):221–62.CrossRefGoogle Scholar
  85. Levin SA, Lubchenco J. 2008. Resilience, robustness, and marine ecosystem-based management. Bioscience 58(1):27–32.CrossRefGoogle Scholar
  86. Litchman E, Klausmeier CA. 2008. Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst 39:615–639.Google Scholar
  87. Lomas MW, Bonachela JA, Levin SA, Martiny AC. 2014. Impact of ocean phytoplankton diversity on phosphate uptake. Proc Natl Acad Sci 111(49):17540–5.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Margalef R, Miyares ME, de Rubinat DBF. 1979. Functional morphology of organisms involved in red tides, as adapted to decaying turbulence. In: Toxic and dinoflagellate blooms. Amsterdam (NL): Elsevier.Google Scholar
  89. Martín PV, Bonachela JA, Levin SA, Muñoz MA. 2015. Eluding catastrophic shifts. Proc Natl Acad Sci 112(15):E1828–36.CrossRefGoogle Scholar
  90. Martiny AC, Pham CTA, Primeau FW, Vrugt JA, Moore JK, Levin SA, Lomas MW. 2013. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat Geosci 6(4):279–83.CrossRefGoogle Scholar
  91. May RM. 1977. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269(5628):471–7.CrossRefGoogle Scholar
  92. May RM, Levin SA, Sugihara G. 2008. Complex systems: ecology for bankers. Nature 451(7181):893–5.PubMedCrossRefGoogle Scholar
  93. Merico A, Bruggeman J, Wirtz K. 2009. A trait-based approach for downscaling complexity in plankton ecosystem models. Ecol Model 220(21):3001–10.CrossRefGoogle Scholar
  94. Messier C, Puettmann K, Chazdon R, Andersson KP, Angers VA, Brotons L, Filotas E, Tittler R, Parrott L, Levin SA. 2015. From management to stewardship: viewing forests as complex adaptive systems in an uncertain world. Conserv Lett 8(5):368–77.CrossRefGoogle Scholar
  95. Momeni B, Waite AJ, Shou W. 2013. Spatial self-organization favors heterotypic cooperation over cheating. eLife 2:e00960.PubMedPubMedCentralGoogle Scholar
  96. Montoya JM, Pimm SL, Solé RV. 2006. Ecological networks and their fragility. Nature 442(7100):259–64.PubMedCrossRefGoogle Scholar
  97. Mora T, Bialek W. 2011. Are biological systems poised at criticality? J Stat Phys 144(2):268–302.CrossRefGoogle Scholar
  98. Morris JJ, Lenski RE, Zinser ER. 2012. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3(2):e00036.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Mueller T, Fagan WF. 2008. Search and navigation in dynamic environments–from individual behaviors to population distributions. Oikos 117(5):654–64.CrossRefGoogle Scholar
  100. Murray JD. 2002. Mathematical biology I: an introduction. In: Antman SS, Marsden JE, Sirovich L, Wiggins S (eds) Interdisciplinary applied mathematics, Vol. 17. New York (NY): Springer.Google Scholar
  101. Nadell CD, Bucci V, Drescher K, Levin SA, Bassler BL, Xavier JB. 2013. Cutting through the complexity of cell collectives. Proc R Soc B 280(1755):20122770.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Nadell CD, Drescher K, Wingreen NS, Bassler BL. 2015. Extracellular matrix structure governs invasion resistance in bacterial biofilms. ISME J 9(8):1700–9.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Nadell CD, Foster KR, Xavier JB. 2010. Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput Biol 6(3):e1000716.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Nadell CD, Xavier JB, Levin SA, Foster KR. 2008. The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6(1):e14.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Newman ME. 2003. The structure and function of complex networks. SIAM Rev 45(2):167–256.CrossRefGoogle Scholar
  106. Norberg J. 2004. Biodiversity and ecosystem functioning: a complex adaptive systems approach. Limnol Oceanogr 49(4):1269–77.CrossRefGoogle Scholar
  107. Norberg J, Swaney DP, Dushoff J, Lin J, Casagrandi R, Levin SA. 2001. Phenotypic diversity and ecosystem functioning in changing environments: a theoretical framework. Proc Natl Acad Sci 98(20):11376–81.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Ostrom E. 1990. Governing the commons: the evolution of institutions for collective action. Cambridge (UK): Cambridge University Press.CrossRefGoogle Scholar
  109. Ostrom E. 2010. Polycentric systems for coping with collective action and global environmental change. Glob Environ Change 20(4):550–7.CrossRefGoogle Scholar
  110. Pacala SW, Silander J. 1985. Neighborhood models of plant population dynamics. I. Single-species models of annuals. Am Nat 125(3):385–411.Google Scholar
  111. Paine RT. 1969. A note on trophic complexity and community stability. Am Nat 103(929):91–3.CrossRefGoogle Scholar
  112. Pascual M, Guichard F. 2005. Criticality and disturbance in spatial ecological systems. Trends Ecol Evol 20(2):88–95.PubMedCrossRefGoogle Scholar
  113. Pascual M, Roy M, Guichard F, Flierl G. 2002. Cluster size distributions: signatures of self–organization in spatial ecologies. Philos Trans R Soc Lond B Biol Sci 357(1421):657–66.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Picioreanu C, Van Loosdrecht MC, Heijnen JJ et al. 1998. Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol Bioeng 58(1):101–16.PubMedCrossRefGoogle Scholar
  115. Pinsky ML, Palumbi SR. 2014. Meta-analysis reveals lower genetic diversity in overfished populations. Mol Ecol 23(1):29–39.PubMedCrossRefGoogle Scholar
  116. Polasky S, Carpenter SR, Folke C, Keeler B. 2011. Decision-making under great uncertainty: environmental management in an era of global change. Trends Ecol Evol 26(8):398–404.PubMedCrossRefGoogle Scholar
  117. Rakoff-Nahoum S, Coyne MJ, Comstock LE. 2014. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr Biol 24(1):40–9.PubMedCrossRefGoogle Scholar
  118. Redfield AC. 1958. The biological control of chemical factors in the environment. Am Sci 46(3):230A, 205–21.Google Scholar
  119. Rodriguez-Iturbe I, Rinaldo A. 1997. Fractal river networks: chance and self-organization. New York (NY): Cambridge University Press.Google Scholar
  120. Rosenthal SB, Twomey CR, Hartnett AT, Wu HS, Couzin ID. 2015. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc Natl Acad Sci 112(15):4690–5.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Sanchirico JN, Wilen JE. 2007. Global marine fisheries resources: status and prospects. Int J Glob Environ Issues 7(2–3):106–18.CrossRefGoogle Scholar
  122. Scheffer M. 2009. Critical transitions in nature and society. Princeton (NJ): Princeton University Press.Google Scholar
  123. Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, Van De Koppel J, Van De Leemput IA, Levin SA, Van Nes EH. 2012. Anticipating critical transitions. Science 338(6105):344–8.PubMedCrossRefGoogle Scholar
  124. Scheffer M, Van Nes EH. 2004. Mechanisms for marine regime shifts: can we use lakes as microcosms for oceans? Prog Oceanogr 60(2):303–19.CrossRefGoogle Scholar
  125. Sheffer E, Batterman SA, Levin SA, Hedin LO. 2015. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle. Nat Plants 1:15182.PubMedCrossRefGoogle Scholar
  126. Sherman E, Moore JK, Primeau F, Tanouye D. 2016. Temperature influence on phytoplankton community growth rates. Global Biogeochem Cycles 30(4):550–9.CrossRefGoogle Scholar
  127. Shuter B. 1979. A model of physiological adaptation in unicellular algae. J Theor Biol 78(4):519–52.PubMedCrossRefGoogle Scholar
  128. Staver CA, Archibald S, Levin SA. 2011a. The global extent and determinants of savanna and forest as alternative biome states. Science 334(6053):230–2.PubMedCrossRefGoogle Scholar
  129. Staver CA, Archibald S, Levin SA. 2011b. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states. Ecology 92(5):1063–72.PubMedCrossRefGoogle Scholar
  130. Steele JH. 1998. Regime shifts in marine ecosystems. Ecol Appl 8:S33–6.CrossRefGoogle Scholar
  131. Strogatz SH. 2014. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Boulder (CO): Westview Press.Google Scholar
  132. Teng YC, Primeau FW, Moore JK, Lomas MW, Martiny AC. 2014. Global-scale variations of the ratios of carbon to phosphorus in exported marine organic matter. Nat Geosci 7(12):895–8.CrossRefGoogle Scholar
  133. Toner J, Tu Y. 1995. Long-range order in a two-dimensional dynamical XY model: how birds fly together. Phys Rev Lett 75(23):4326.PubMedCrossRefGoogle Scholar
  134. Toseland ADSJ, Daines SJ, Clark JR, Kirkham A, Strauss J, Uhlig C, Lenton TM, Valentin K, Pearson GA, Moulton V. 2013. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat Clim Change 3(11):979–84.CrossRefGoogle Scholar
  135. Traving SJ, Thygesen UH, Riemann L, Stedmon CA. 2015. A model of extracellular enzymes in free-living microbes: which strategy pays off? Appl Environ Microbiol 81(21):7385–93.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Tunstrøm K, Katz Y, Ioannou CC, Huepe C, Lutz MJ, Couzin ID. 2013. Collective states, multistability and transitional behavior in schooling fish. PLoS Comput Biol 9(2):e1002915.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Turing AM. 1952. The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237(641):37–72.CrossRefGoogle Scholar
  138. Tyrrell T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400(6744):525–31.CrossRefGoogle Scholar
  139. Vallino JJ. 2010. Ecosystem biogeochemistry considered as a distributed metabolic network ordered by maximum entropy production. Philos Trans R Soc Lond B Biol Sci 365(1545):1417–27.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Van Cappellen P, Ingall ED. 1994. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9(5):677–92.CrossRefGoogle Scholar
  141. Van Nes EH, Scheffer M. 2005. Implications of spatial heterogeneity for catastrophic regime shifts in ecosystems. Ecology 86(7):1797–807.CrossRefGoogle Scholar
  142. Vetter Y, Deming J, Jumars P, Krieger-Brockett B. 1998. A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microb Ecol 36(1):75–92.PubMedCrossRefGoogle Scholar
  143. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O. 1995. Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75(6):1226.PubMedCrossRefGoogle Scholar
  144. Viswanathan GM, Da Luz MG, Raposo EP, Stanley HE. 2011. The physics of foraging: an introduction to random searches and biological encounters. Cambridge (UK): Cambridge University Press.CrossRefGoogle Scholar
  145. Ward BA, Dutkiewicz S, Jahn O, Follows MJ. 2012. A size-structured food-web model for the global ocean. Limnol Oceanogr 57(6):1877–91.CrossRefGoogle Scholar
  146. Ward BA, Follows MJ. 2016. Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. Proc Natl Acad Sci 113(11):2958–63.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Wellington W. 1964. Qualitative changes in populations in unstable environments. Can Entomol 96(1–2):436–51.CrossRefGoogle Scholar
  148. West SA, El Mouden C, Gardner A. 2011. Sixteen common misconceptions about the evolution of cooperation in humans. Evol Hum Behav 32(4):231–62.CrossRefGoogle Scholar
  149. Young GF, Scardovi L, Cavagna A, Giardina I, Leonard NE. 2013. Starling flock networks manage uncertainty in consensus at low cost. PLoS Comput Biol 9(1):e1002894.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUSA

Personalised recommendations