, Volume 20, Issue 7, pp 1233–1249 | Cite as

Long-lasting Imprint of Former Glassworks on Vegetation Pattern in an Extremely Species-rich Grassland: A Battle of Species Pools on Mesic Soils

  • Michal Hájek
  • Petr Dresler
  • Petra Hájková
  • Eva Hettenbergerová
  • Peter Milo
  • Zuzana Plesková
  • Michal Pavonič


Increasing evidence suggests that past human activities have irreversibly changed soil properties and biodiversity patterns. In the White Carpathian Mts (Central-Eastern Europe), a mosaic of hyper-species-rich and species-rich patches have developed in a regularly mown dry grassland in the area of a glassworks abandoned in the eighteenth century. We tested whether and how anthropogenically changed soils affected the distribution of extraordinary species richness. Using magnetometry we detected former furnaces, workspace, waste deposit and unaffected surrounding grasslands and compared their vegetation and environmental conditions. Archaeological features, especially furnaces and waste deposits, showed a higher pH, higher soil concentrations of exchangeable phosphorus, manganese, lead and calcium, and higher productivity. Surrounding grassland showed higher iron and sodium concentrations in the soil, higher N:P ratio in the biomass and higher species richness. Moisture was uniformly lower in soils on archaeological features, where non-trivially a more ‘mesic’ vegetation in terms of European habitat classification occurred. Plant compositional variation was best explained by water-extractable phosphorus. Because nutrient-richer patches were not moister as common elsewhere, and because species richness was only poorly accounted for by productivity, the occurrence of a species-poor ‘mesic’ vegetation on archaeological features was evidently caused by a long-lasting phosphorus oversupply which favours a comparatively small species pool of rather recently arriving species. On the contrary, surrounding phosphorus-poorer grasslands still contain the ancient species pool whose extraordinary size determines the exceptional species richness of grasslands in the study region. Its maintenance or restoration demands a persistent phosphorus deficiency.


biodiversity Anthropocene archaeology phosphorus species richness productivity N:P biomass ratio soil magnetism moisture restoration 



This study was funded by Masaryk University (Project No. MUNI/M/1790/2014). PH was partially supported by the long-term developmental project of the Czech Academy of Sciences (RVO 67985939). We are grateful to all colleagues and friends who helped us with this research, especially Katarína Devánová and Lucia Cachovanová, who participated in field sampling. Karel Prach, Jan Roleček, Jaroslav Záhora, Vít Syrovátka, Jan Divíšek and Kateřina Břečková commented on some of our interpretations or analyses. Three anonymous reviewers provided useful comments. Ilona Knollová exported data from the phytosociological database. Jan W. Jongepier kindly edited the paper linguistically. The Brontosaurus Movement, core unit Mařatice, has conducted conservation management of the grassland in the past decades and scythed the trodden sward in 2015.

Supplementary material

10021_2017_107_MOESM1_ESM.png (483 kb)
Supplementary material 1 (PNG 483 kb)
10021_2017_107_MOESM2_ESM.pdf (208 kb)
Supplementary material 2 (PDF 208 kb)
10021_2017_107_MOESM3_ESM.tif (12.9 mb)
Supplementary material 3 (TIFF 13158 kb)


  1. Araya YN, Gowing DJ, Dise N. 2013. Does soil nitrogen availability mediate the response of grassland composition to water regime? J Veg Sci 24:506–17.CrossRefGoogle Scholar
  2. Beven KJ, Kirkby MJ. 1979. A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69.CrossRefGoogle Scholar
  3. Biek L, Bayley J. 1979. Glass and other vitreous materials. World Archaeol 11:1–25.CrossRefGoogle Scholar
  4. Boecker D, Centeri C, Welp G, Möseler BM. 2015. Parallels of secondary grassland succession and soil regeneration in a chronosequence of central-Hungarian old fields. Folia Geobotanica 50:91–106.CrossRefGoogle Scholar
  5. Cachovanová L, Hájek M, Fajmonová Z, Marrs R. 2012. Species richness, community specialization and soil-vegetation relationships of managed grasslands in a geologically heterogeneous landscape. Folia Geobotanica 47:349–71.CrossRefGoogle Scholar
  6. Ceulemans T, Merckx R, Hens M, Honnay O. 2013. Plant species loss from European semi-natural grasslands following nutrient enrichment. Is it nitrogen or is it phosphorus? Glob Ecol Biogeogr 22:73–82.CrossRefGoogle Scholar
  7. Ceulemans T, Stevens CJ, Duchateau L, Jacquemyn H, Gowng DJG, Merckx R, Wallace H, van Rooijen N, Goethem T, Bobbink R, Dorland E, Gaudnik C, Alard D, Corcket E, Muller S, Dise NB, Dupr C, Diekmann M, Honnay O. 2014. Soil phosphorus constrains biodiversity across European grasslands. Glob Change Biol 20:3814–22.CrossRefGoogle Scholar
  8. Chytrý M, Ed. 2007. Vegetace České republiky 1. Travinná a keříčková vegetace [Vegetation of the Czech Republic 1. Grassland and heathland vegetation]. Praha: Academia Praha.Google Scholar
  9. Chytrý M, Dražil T, Hájek M, Kalníková V, Preislerová Z, Šibík J, Ujházy K, Axmanová I, Bernátová D, Blanár D, Dančák M, Dřevojan P, Fajmon K, Galvánek D, Hájková P, Herben T, Hrivnák R, Janeček Š, Janišová M, Jiráská Š, Kliment J, Kochjarová J, Lepš J, Leskovjanská A, Merunková K, Mládek J, Slezák M, Šeffer J, Šefferová V, Škodová I, Uhlířová J, Ujházyová M, Vymazalová M. 2015. The most species-rich plant communities in the Czech Republic and Slovakia (with new world records). Preslia 87:217–78.Google Scholar
  10. Chytrý M, Rafajová M. 2003. Czech National Phytosociological Database: basic statistics of the available vegetation-plot data. Preslia 75:1–15.Google Scholar
  11. Cílová Z, Woitsch J. 2012. Potash–a key raw material of glass batch for Bohemian glasses from 14th–17th centuries? J Archaeol Sci 39:371–80.CrossRefGoogle Scholar
  12. Closset-Kopp D, Decocq G. 2015. Remnant artificial habitats as biodiversity islets into forest oceans. Ecosystems 18:507–19.CrossRefGoogle Scholar
  13. de Mazancourt C, Isbell F, Larocque A, Berendse F, Luca E, Grace JB, Haegeman B, Polley HW, Roscher C, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Loreau M. 2013. Predicting ecosystem stability from community composition and biodiversity. Ecol Lett 16:617–25.CrossRefPubMedGoogle Scholar
  14. Dengler J, Janišová M, Török P, Wellstein C. 2014. Biodiversity of Palaearctic grasslands: a synthesis. Agric Ecosyst Environ 182:1–14.CrossRefGoogle Scholar
  15. Duffková R, Hejcman M, Libichová H. 2015. Effect of cattle slurry on soil and herbage chemical properties, yield, nutrient balance and plant species composition of moderately dry Arrhenatherion grassland. Agric Ecosyst Environ 213:281–9.CrossRefGoogle Scholar
  16. Dupouey JL, Dambrine E, Laffite JD, Moares C. 2002. Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978–84.CrossRefGoogle Scholar
  17. Ewald J. 2003. The calcareous riddle: why are there so many calciphilous species in the Central European flora? Folia Geobotanica 38:357–66.CrossRefGoogle Scholar
  18. Grace JB, Anderson TM, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hautier Y, Hillebrand H, Lind EM, Pärtel M, Bakker JD, Buckley YM, Crawley MJ, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Hector A, Knops JM, MacDougall AS, Melbourne BA, Morgan JW, Orrock JL, Prober SM, Smith MD. 2016. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529:390–3.CrossRefPubMedGoogle Scholar
  19. Güsewell S, Bailey KM, Roem WJ, Bedford BL. 2005. Nutrient limitation and botanical diversity in wetlands: can fertilisation raise species richness? Oikos 109:71–80.CrossRefGoogle Scholar
  20. Gustafsson BG, Schenk F, Blenckner T, Eilola K, Meier HEM, Müller-Karulis B, Neumann T, Ruoho-Airola T, Savchuk OP, Zorita E. 2012. Reconstructing the development of Baltic Sea eutrophication 1850–2006. Ambio 41:534–48.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hájek M, Dudová L, Hájková P, Roleček J, Moutelíková J, Jamrichová E, Horsák M. 2016. Contrasting Holocene environmental histories may explain patterns of species richness and rarity in a Central European landscape. Quatern Sci Rev 133:48–61.CrossRefGoogle Scholar
  22. Hautier Y, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hillebrand H, Lind EM, MacDougall AS, Stevens CJ, Bakker JD, Buckley YM, Chu Ch, Collins SL, Daleo P, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Jin VL, Klein JA, Knops JMH, La Pierre KJ, Li W, McCulley RL. 2014. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508:521–5.CrossRefPubMedGoogle Scholar
  23. Hejcman M, Klaudisová M, Štursa J, Pavlů V, Schellberg J, Hejcmanová P, Hakla J, Rauch O, Vacek S. 2007. Revisiting a 37 years abandoned fertilizer experiment on Nardus grassland in the Czech Republic. Agric Ecosyst Environ 118:231–6.CrossRefGoogle Scholar
  24. Hejcman M, Szaková J, Schellberg J, Šrek P, Tlustoš P. 2009. The Rengen Grassland Experiment: soil contamination by trace elements after 65 years of Ca, N, P and K fertiliser application. Nutr Cycl Agroecosyst 83:39–50.CrossRefGoogle Scholar
  25. Hejcman M, Karlík P, Ondráček J, Klír T. 2013a. Short-term medieval settlement activities irreversibly changed forest soils and vegetation in Central Europe. Ecosystems 16:652–63.CrossRefGoogle Scholar
  26. Hejcman M, Hejcmanová P, Pavlů V, Beneš J. 2013b. Origin and history of grasslands in Central Europe—a review. Grass Forage Sci 68:345–63.CrossRefGoogle Scholar
  27. Helsen K, Ceulemans T, Stevens CJ, Honnay O. 2014. Increasing soil nutrient loads of European semi-natural grasslands strongly alter plant functional diversity independently of species loss. Ecosystems 17:169–81.CrossRefGoogle Scholar
  28. Hunt CO, Gilbertson DD, El-Rishi HA. 2007. An 8000-year history of landscape, climate, and copper exploitation in the Middle East: the Wadi Faynan and the Wadi Dana National Reserve in southern Jordan. J Archaeol Sci 34:1306–38.CrossRefGoogle Scholar
  29. Isbell F, Tilamn D, Polasky S, Binder S, Hawthorne P. 2013. Low biodiversity state persists two decades after cessation of nutrient enrichment. Ecol Lett 16:454–60.CrossRefPubMedGoogle Scholar
  30. Jongepierová I, Ed. 2008. Louky Bílých Karpat [Grasslands of the White Carpathian Mountains]. Veselí nad Moravou: ZO ČSOP Bílé Karpaty.Google Scholar
  31. Jonasson S. 1992. Plant responses to fertilization and species removal in tundra related to community structure and clonality. Oikos 63:420–9.CrossRefGoogle Scholar
  32. Kapusta P, Szarek-Łukaszewska G, Jędrzejczyk-Korycińska M, Zagórna M. 2015. Do heavy-metal grassland species survive under a Scots pine canopy during early stages of secondary succession? Folia Geobotanica 50:317–29.CrossRefGoogle Scholar
  33. Karlík P, Poschlod P. 2014. Půdní semenná banka a nadzemní vegetace suchého trávníku „V nákli“ u Srbska v Českém krasu. Bohemia Cent 32:277–96.Google Scholar
  34. Klimeš L, Hájek M, Mudrák O, Dančák M, Preislerová Z, Hájková P, Jongepierová I, Klimešová J. 2013. Effects of changes in management on resistance and resilience in three grassland communities. Appl Veg Sci 16:640–9.CrossRefGoogle Scholar
  35. Kuneš P, Odgaard BV, Gaillard M-J. 2011. Soil phosphorus as a control of productivity and openness in temperate interglacial forest ecosystems. J Biogeogr 38:2150–64.CrossRefGoogle Scholar
  36. Kuneš P, Svobodová-Svitavská H, Kolář J, Hajnalová M, Abraham V, Macek M, Tkáč P, Szabó P. 2015. The origin of grasslands in the temperate forest zone of east-central Europe: long-term legacy of climate and human impact. Quatern Sci Rev 116:15–27.CrossRefGoogle Scholar
  37. Laliberté R, Zemunik G, Turner BL. 2014. Environmental filtering explains variation in plant diversity along resource gradients. Science 345:1602–5.CrossRefPubMedGoogle Scholar
  38. Lambers H, Plaxton WC. 2015. Phosphorus: back to the roots. Annual Plant Rev 48:3–22.Google Scholar
  39. Marini L, Scotton M, Klimek S, Isselstein J, Pecile A. 2007. Effects of local factors on plant species richness and composition of Alpine meadows. Agric Ecosyst Environ 119:281–8.CrossRefGoogle Scholar
  40. Marlon JR, Bartlein PJ, Daniau A-L, Harrison SP, Maezumi SY, Power MJ, Tinner W, Vanniér B. 2013. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quatern Sci Rev 65:5–25.CrossRefGoogle Scholar
  41. Martinuzzi S, Gavier-Pizarro GI, Lugo AE, Radeloff VC. 2015. Future land-use changes and the potential for novelty in ecosystems of the United States. Ecosystems 18:1332–42.CrossRefGoogle Scholar
  42. McGill BJ, Dornelas M, Gotelli NJ, Magurran AE. 2015. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol Evol 30:104–13.CrossRefPubMedGoogle Scholar
  43. Merunková K, Chytrý M. 2012. Environmental control of species richness and composition in upland grasslands of the southern Czech Republic. Plant Ecol 213:591–602.CrossRefGoogle Scholar
  44. Mládková P, Mládek J, Hejduk S, Hejcman M, Cruz P, Jouany C, Pakeman RJ. 2015. High-nature-value grasslands have the capacity to cope with nutrient impoverishment induced by mowing and livestock grazing. J Appl Ecol 52:1073–81.CrossRefGoogle Scholar
  45. Monge G, Jimenez-Espejo FJ, García-Alix A, Martínez-Ruiz F, Mattielli N, Finlayson C, Ohkouchi N, Sánchez MC, de Castro JMB, Blasco R, Rosell J, Carrión J, Rodríguez-Vidal J, Finlayson G. 2015. Earliest evidence of pollution by heavy metals in archaeological sites. Sci Rep 5:14252.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Newbound M, McCarthy MA, Lebel T. 2010. Fungi and the urban environment: a review. Landsc Urban Plann 96:138–45.CrossRefGoogle Scholar
  47. Olde Venterink H. 2011. Does phosphorus limitation promote species-rich plant communities? Plant Soil 345:1–9.CrossRefGoogle Scholar
  48. Oliver MA. 1990. Kriging: a method of interpolation for geographical information systems. Int J Geograph Inf Syst 4:313–32.Google Scholar
  49. Palmer MW. 1994. Variation in species richness: towards a unification of hypotheses. Folia Geobotanica et Phytotaxonomica 29:511–30.CrossRefGoogle Scholar
  50. Peñuelas J, Sardans J, Rivas-Ubach A, Janssens IA. 2012. The human-induced imbalance between C, N and P in Earth’s life system. Glob Change Biol 18:3–6.CrossRefGoogle Scholar
  51. Poschlod P, Baumann A, Karlík P. 2009. Origin and development of grasslands in central Europe. In: Veen P, Jefferson R, De Smidt J, Van der Straaten J, Eds. Grasslands in Europe of high nature value. Zeist: KNNV Publishing. pp 15–25.Google Scholar
  52. Prach K, Jongepierová I, Řehounková K, Fajmon K. 2014. Restoration of grasslands on ex-arable land using regional and commercial seed mixtures and spontaneous succession: successional trajectories and changes in species richness. Agric Ecosyst Environ 182:131–6.CrossRefGoogle Scholar
  53. Prach K, Fajmon K, Jongepierová I, Řehounková K. 2015. Landscape context in colonization of restored dry grasslands by target species. Appl Veg Sci 26:181–9.CrossRefGoogle Scholar
  54. Provan DM. 1973. The soils of an iron age farm site—Bjellandsoynae, SW Norway. Nor Archaeol Rev 6:30–41.CrossRefGoogle Scholar
  55. Pyšek P, Danihelka J, Sádlo J, Chrtek J Jr, Chytrý M, Jarošík V, Kaplan Z, Krahulec F, Moravcová L, Pergl J, Štajerová K, Tichý L. 2012. Catalogue of alien plants of the Czech Republic: checklist update, taxonomic diversity and invasion patterns. Preslia 84:155–255.Google Scholar
  56. Radeloff VC, Williams JW, Bateman BL, Burke KD, Carter SK, Childress ES, Cromwell KJ, Gratton C, Hasley AO, Kraemer BM, Latzka AW, Marin-Spiotta E, Meine CD, Munoz SE, Neeson TM, Pidgeon AM. 2015. The rise of novelty in ecosystems. Ecol Appl 25:2051–68.CrossRefPubMedGoogle Scholar
  57. Roleček J, Čornej II, Tokarjuk AI. 2014. Understanding the extreme species richness of semi-dry grasslands in east-central Europe: a comparative approach. Preslia 86:13–34.Google Scholar
  58. Roleček J, Hájek M, Karlík P, Novák J. 2015. Reliktní vegetace na mezických stanovištích. [Relict vegetation on mesic sites]. Zprávy České Botanické Společnosti 50:201–45.Google Scholar
  59. Romey C, Vella C, Rochette P, Andrieu-Ponel V, M-agnin F, Veron A, Talon B, Landuré C, D’Ovidio AM, Delanghe D, Ghilardi M, Angeletti B. 2015. Environmental imprints of landscape evolution and human activities during the Holocene in a small catchment of the Calanques Massif (Cassis, Southern France). Holocene 25:1454–69.CrossRefGoogle Scholar
  60. Rozbrojová Z, Hájek M, Hájek O. 2010. Vegetation diversity of mesic meadows and pastures in the West Carpathians. Preslia 82:307–32.Google Scholar
  61. Semelová V, Hejcman M, Pavlů V, Vacek S, Podrázský V. 2008. The Grass Garden in the Giant Mts (Czech Republic): residual effect of long-term fertilization after 62 years. Agric Ecosyst Environ 123:337–42.CrossRefGoogle Scholar
  62. Sillinger P. 1929. Bílé Karpaty. Nástin geobotanických poměrů se zvláštním zřetelem ke společenstvům rostlinným [Bílé Karpaty Mts. An outline of geobotanical conditions with a special emphasis on plant communities]. Rozpravy Královské České Společnosti Nauk, ser. Mat Přír 8:1–73.Google Scholar
  63. Silvertown J, Poulton P, Johnston E, Edwards G, Heard M, Biss PM. 2006. The Park Grass Experiment 1856–2006: its contribution to ecology. J Ecol 94:801–14.CrossRefGoogle Scholar
  64. Škodová I, Janišová M, Hegedüšová K, Borsukevych L, Smatanová J, Kish R, Píš V. 2015. Sub-montane semi-natural grassland communities in the Eastern Carpathians (Ukraine). Tuexenia 35:355–80.Google Scholar
  65. Šmarda P, Hejcman M, Březinová A, Horová L, Steigerová H, Zedek F, Bureš P, Hejcmanová P, Schellberg J. 2013. Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long-term grassland fertilization experiment. New Phytol 200:911–21.CrossRefPubMedGoogle Scholar
  66. Storkey J, Macdonald AJ, Poulton PR, Scott T, Köhler IH, Schnyder H, Goulding KWT, Crawley MJ. 2015. Grassland biodiversity bounces back from long-term nitrogen addition. Nature 528:401–4.CrossRefPubMedGoogle Scholar
  67. Tyler G. 1996. Soil chemistry and plant distributions in rock habitats of Southern Sweden. Nordic J Bot 16:609–35.CrossRefGoogle Scholar
  68. van der Maarel E. 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39:97–114.CrossRefGoogle Scholar
  69. van Rooijen NM, de Keersmaecker W, Ozinga WA, Coppin P, Hennekens SM, Schaminée JHJ, Somers B, Honnay O. 2015. Plant species diversity mediates ecosystem stability of natural dune grasslands in response to drought. Ecosystems 18:1383–94.CrossRefGoogle Scholar
  70. Veen P, Jefferson R, de Smidt J, van der Straaten J. 2009. Grasslands in Europe of high nature value. Zeist: KNNV Publishing.Google Scholar
  71. Woch MW, Kapusta P, Stefanowicz AM. 2015. Variation in dry grassland communities along a heavy metals gradient. Ecotoxicology 25:80–90.CrossRefPubMedCentralGoogle Scholar
  72. Wilson JB, Peet RK, Dengler J, Pärtel M. 2012. Plant species richness: the world records. J Veg Sci 23:796–802.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Michal Hájek
    • 1
  • Petr Dresler
    • 2
  • Petra Hájková
    • 1
    • 3
  • Eva Hettenbergerová
    • 1
  • Peter Milo
    • 2
  • Zuzana Plesková
    • 1
  • Michal Pavonič
    • 1
  1. 1.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Archaeology and Museology, Faculty of ArtsMasaryk UniversityBrnoCzech Republic
  3. 3.Laboratory of Paleoecology, Institute of BotanyCzech Academy of SciencesBrnoCzech Republic

Personalised recommendations