, Volume 19, Issue 5, pp 910–926 | Cite as

Factors Regulating Nitrogen Retention During the Early Stages of Recovery from Fire in Coastal Chaparral Ecosystems

  • Erin J. Hanan
  • Carla M. D’Antonio
  • Dar A. Roberts
  • Joshua P. Schimel


Fire is a fundamental reorganizing force in chaparral and other Mediterranean-type ecosystems. Postfire nutrient redistribution and cycling are frequently invoked as drivers of ecosystem recovery. The extent to which N is transported from slopes to streams following fire is a function of the balance between the rate at which soil microbes retain and metabolize N into forms that readily dissolve or leach, and how rapidly recovering plants sequester this mobilized N. To better understand how fire impacts this balance, we sampled soil and plant N dynamics in 17 plots distributed across two burned, chaparral-dominated watersheds in Santa Barbara County, California. We measured a variety of ecosystem properties in both burned and unburned plots on a periodic basis for 2 years, including soil water content, pH, soil and plant carbon and nitrogen, extractable inorganic nitrogen, dissolved organic nitrogen, and microbial biomass. In burned plots, nitrification was significantly enhanced relative to rates measured in unburned plots. Ephemeral herbs established quickly following the first postfire rain events. Aboveground plant biomass assimilated N commensurate with soil net mineralization, implying tight N cycling during the early stages of recovery. Microbial biomass N, on the other hand, remained low throughout the study. These findings highlight the importance of herbaceous species in conserving ecosystem nutrients as shrubs gradually recover.


disturbance wildfire xeric ecosystems ash redistribution nitrate leaching mountainous landscapes N-sinks 



The authors offer their thanks to John Melack for support and discussions that improved the sampling design and analysis for this study; to Viviane Vincent, Amanda Golay, Sarah Kullbom, Megan Lipps, Daniel Keck, Bailey Smith, Spencer Pritchard, Emma Panish, Brittany Luttrell, Alyssa Raley, and Matt Mass for their field and laboratory assistance; and to Jennifer King and Dad Roux-Michollet for providing laboratory instruments and instruction. The authors also thank the editor and anonymous reviewers for their constructive comments, which helped to improve the manuscript. This study was supported by the NSF RAPID Grant (DEB-0952599), and the Santa Barbara Coastal Long-Term Ecological Research project (OCE-0620276).

Supplementary material

10021_2016_9975_MOESM1_ESM.docx (37 kb)
Online Appendix (DOCX 36 kb).


  1. Austin AT, Vitousek PM. 1998. Nutrient dynamics on a precipitation gradient in Hawai’i. Oecologia 113:519–29. doi: 10.1007/s004420050405.CrossRefGoogle Scholar
  2. Bååth E, Frostegård Å, Pennanen T, Fritze H. 1995. Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biol Biochem 27:229–40. doi: 10.1016/0038-0717(94)00140-V.CrossRefGoogle Scholar
  3. Beck T, Joergensen RG, Kandeler E, Makeschin F, Nuss E, Oberholzer HR, Scheu S. 1997. An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol Biochem 29:1023–32. doi: 10.1016/S0038-0717(97)00030-8.CrossRefGoogle Scholar
  4. Binkley D, Hart SC. 1989. The components of nitrogen availability assessments in forest soils. In: Stewart BA, Ed. Advances in soil science, advances in soil science. New York: Springer. p 57–112.CrossRefGoogle Scholar
  5. Brookes PC, Landman A, Pruden G, Jenkinson DS. 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–42. doi: 10.1016/0038-0717(85)90144-0.CrossRefGoogle Scholar
  6. Bytnerowicz A, Fenn ME. 1996. Nitrogen deposition in California forests: a review. Environ Pollut 92:127–46. doi: 10.1016/0269-7491(95)00106-9.CrossRefPubMedGoogle Scholar
  7. Castaldi S, Carfora A, Fiorentino A, Natale A, Messere A, Miglietta F, Cotrufo MF. 2008. Inhibition of net nitrification activity in a Mediterranean woodland: possible role of chemicals produced by Arbutus unedo. Plant Soil 315:273–83. doi: 10.1007/s11104-008-9750-x.CrossRefGoogle Scholar
  8. Certini G. 2005. Effects of fire on properties of forest soils: a review. Oecologia 143:1–10. doi: 10.1007/s00442-004-1788-8.CrossRefPubMedGoogle Scholar
  9. Cheng WX, Kuzyakov Y. 2005. Root effects on soil organic matter decomposition. Agron. Monogr. 48:119–43.Google Scholar
  10. Choromanska U, DeLuca TH. 2002. Microbial activity and nitrogen mineralization in forest mineral soils following heating: evaluation of post-fire effects. Soil Biol Biochem 34:263–71. doi: 10.1016/S0038-0717(01)00180-8.CrossRefGoogle Scholar
  11. Christensen NL. 1973. Fire and the nitrogen cycle in california chaparral. Science 181:66–8. doi: 10.1126/science.181.4094.66.CrossRefPubMedGoogle Scholar
  12. Christensen NL, Muller CH. 1975. Effects of fire on factors controlling plant growth in Adenostoma chaparral. Ecol Monogr 45:29–55. doi: 10.2307/1942330.CrossRefGoogle Scholar
  13. Cleve KV, Viereck LA. 1981. Forest succession in relation to nutrient cycling in the boreal forest of Alaska. In: West DC, Shugart HH, Botkin DB, Eds. Forest succession, Springer advanced texts in life sciences. New York: Springer. p 185–211.Google Scholar
  14. Coombs JS, Melack JM. 2013. Initial impacts of a wildfire on hydrology and suspended sediment and nutrient export in California chaparral watersheds. Hydrol Process 27:3842–51. doi: 10.1002/hyp.9508.CrossRefGoogle Scholar
  15. Davis FW, Borchert MI, Odion DC. 1989. Establishment of microscale vegetation pattern in maritime chaparral after fire. Vegetatio 84:53–67. doi: 10.1007/BF00054665.CrossRefGoogle Scholar
  16. Davis SD, Mooney HA. 1986. Water use patterns of four co-occurring chaparral shrubs. Oecologia 70:172–7.CrossRefGoogle Scholar
  17. Debano LF, Conrad CE. 1978. The effect of fire on nutrients in a chaparral ecosystem. Ecology 59:489–97. doi: 10.2307/1936579.CrossRefGoogle Scholar
  18. DeBano LF, Conrad CE. 1976. Nutrients lost in debris and runoff water from a burned chaparral watershed. PB US Natl Tech Inf Serv.Google Scholar
  19. De Boer W, Kowalchuk GA. 2001. Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33:853–66. doi: 10.1016/S0038-0717(00)00247-9.CrossRefGoogle Scholar
  20. DeSouza J, Silka PA, Davis SD. 1986. Comparative physiology of burned and unburned Rhus laurina after chaparral wildfire. Oecologia 71:63–8. doi: 10.1007/BF00377322.CrossRefGoogle Scholar
  21. DiStefano JF, Gholz HL. 1986. A proposed use of ion exchange resins to measure nitrogen mineralization and nitrification in intact soil cores. Commun Soil Sci Plant Anal 17:989–98. doi: 10.1080/00103628609367767.CrossRefGoogle Scholar
  22. Dunn PH, DeBano LF, Eberlein GE. 1979. Effects of burning on chaparral soils: II. Soil microbes and nitrogen mineralization. Soil Sci Soc Am J 43:509. doi: 10.2136/sssaj1979.03615995004300030016x.CrossRefGoogle Scholar
  23. Fenn ME, Poth MA, Dunn PH, Barro SC. 1993. Microbial N and biomass, respiration and N mineralization in soils beneath two chaparral species along a fire-induced age gradient. Soil Biol Biochem 25:457–66. doi: 10.1016/0038-0717(93)90071-I.CrossRefGoogle Scholar
  24. Fierer N. 2003. Stress ecology and the dynamics of microbial communities and processes in soil. Santa Barbara (CA): University of California, Santa Barbara.Google Scholar
  25. Fierer N, Schimel JP. 2002. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–87. doi: 10.1016/S0038-0717(02)00007-X.CrossRefGoogle Scholar
  26. Franklin JF, Hemstrom MA. 1981. Aspects of succession in the coniferous forests of the pacific northwest. In: West DC, Shugart HH, Botkin DB, Eds. Forest succession, Springer advanced texts in life sciences. New York: Springer. p 212–29.Google Scholar
  27. Fritze H, Pennanen T, Pietikäinen J. 1993. Recovery of soil microbial biomass and activity from prescribed burning. Can J For Res 23:1286–90. doi: 10.1139/x93-164.CrossRefGoogle Scholar
  28. Giovannini G, Lucchesi S, Giachetti M. 1990. Effects of heating on some chemical parameters related to soil fertility and plant growth. Soil Sci 149:344–50. doi: 10.1097/00010694-199006000-00005.CrossRefGoogle Scholar
  29. Grasso G, Ripabelli G, Sammarco M, Mazzoleni S. 1996. Effects of heating on the microbial populations of a grassland soil. Int J Wildland Fire 6:67–70.CrossRefGoogle Scholar
  30. Gray JT, Schlesinger WH. 1981. Nutrient cycling in mediterranean type ecosystems. In: Miller PC, Ed. Resource use by chaparral and matorral, ecological studies. New York: Springer. p 259–85.CrossRefGoogle Scholar
  31. Green RO, Eastwood ML, Sarture CM, Chrien TG, Aronsson M, Chippendale BJ, Faust JA, Pavri BE, Chovit CJ, Solis M, Olah MR, Williams O. 1998. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens Environ 65:227–48. doi: 10.1016/S0034-4257(98)00064-9.CrossRefGoogle Scholar
  32. Grogan P, Burns TD, Chapin FS. 2000. Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia 122:537–44. doi: 10.1007/s004420050977.CrossRefGoogle Scholar
  33. Guo Q. 2001. Early post-fire succession in California chaparral: changes in diversity, density, cover and biomass. Ecol Res 16:471–85.CrossRefGoogle Scholar
  34. Hanan EJ, Schimel JP, Dowdy K, D’Antonio CM. 2016. Effects of substrate supply, pH, and char on net nitrogen mineralization and nitrification along a wildfire-structured age gradient in chaparral. Soil Biol Biochem 95:87–99. doi: 10.1016/j.soilbio.2015.12.017.CrossRefGoogle Scholar
  35. Hart SC, DeLuca TH, Newman GS, MacKenzie MD, Boyle SI. 2005. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For Ecol Manag 220:166–84. doi: 10.1016/j.foreco.2005.08.012 Forest Soils Research: Theory, Reality and its Role in Technology Selected and Edited Papers from the 10th North American Forest Soils Conference held in Saulte Ste. Marie, ON, 20–24 July 2003.CrossRefGoogle Scholar
  36. Hart SC, Firestone MK. 1989. Evaluation of three insitu soil nitrogen availability assays. Can J For Res 19:185–91. doi: 10.1139/x89-026.CrossRefGoogle Scholar
  37. Henry JD, Swan JMA. 1974. Reconstructing forest history from live and dead plant material—an approach to the study of forest succession in Southwest New Hampshire. Ecology 55:772–83. doi: 10.2307/1934413.CrossRefGoogle Scholar
  38. Homyak PM, Sickman JO, Miller AE, Melack JM, Meixner T, Schimel JP. 2014. Assessing nitrogen-saturation in a seasonally dry chaparral watershed: limitations of traditional indicators of N-saturation. Ecosystems 17:1286–305. doi: 10.1007/s10021-014-9792-2.CrossRefGoogle Scholar
  39. Hurlbert SH, Lombardi CM. 2009. Final collapse of the Neyman–Pearson decision theoretic framework and rise of the neoFisherian. Ann Zool Fenn 46:311–49. doi: 10.5735/086.046.0501.CrossRefGoogle Scholar
  40. Jenny H, Vlamis J, Martin WE. 1950. Greenhouse assay of fertility of California soils. Hilgardia 20:1–8.CrossRefGoogle Scholar
  41. Jia X, Richards J et al. 1999. Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification. IEEE Trans Geosci Remote Sens 37(1):538–42.CrossRefGoogle Scholar
  42. Jones JB. 2001. Laboratory guide for conducting soil tests and plant analysis. Boca Raton: CRC.Google Scholar
  43. Keeley JE. 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int J Wildland Fire 18:116–26.CrossRefGoogle Scholar
  44. Keeley JE, Fotheringham CJ. 2001. Historic fire regime in Southern California Shrublands. Conserv Biol 15:1536–48. doi: 10.1046/j.1523-1739.2001.00097.x.CrossRefGoogle Scholar
  45. Keeley JE, Fotheringham CJ, Baer-Keeley M. 2005. Determinants of postfire recovery and succession in Mediterranean-climate shrublands of California. Ecol Appl 15:1515–34.CrossRefGoogle Scholar
  46. Keeley JE, Keeley SC. 2000. Chaparral. In: North American terrestrial vegetation. pp 165–207.Google Scholar
  47. Key CH, Benson NC. 2004. Ground measure of severity, the composite burn index. FIREMON Landsc Assess 4:2004.Google Scholar
  48. Knicker H. 2007. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85:91–118. doi: 10.1007/s10533-007-9104-4.CrossRefGoogle Scholar
  49. Kutiel P, Inbar M. 1993. Fire impacts on soil nutrients and soil erosion in a Mediterranean pine forest plantation. Catena 20:129–39.CrossRefGoogle Scholar
  50. Kuzyakov Y, Friedel JK, Stahr K. 2000. Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–98. doi: 10.1016/S0038-0717(00)00084-5.CrossRefGoogle Scholar
  51. Lachat. 2003. Determination of ammonium, nitrate, ortho-phosphate and total phosphorus. CO: Loveland.Google Scholar
  52. Lewis DJ, Singer MJ, Dahlgren RA, Tate KW. 2006. Nitrate and sediment fluxes from a California Rangeland Watershed. J Environ Qual 35:2202. doi: 10.2134/jeq2006.0042.CrossRefPubMedGoogle Scholar
  53. Likens GE, Bormann FH, Johnson NM, Fisher DW, Pierce RS. 1970. Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecol Monogr 40:23–47. doi: 10.2307/1942440.CrossRefGoogle Scholar
  54. Li X, Meixner T, Sickman JO, Miller AE, Schimel JP, Melack JM. 2006. Decadal-scale dynamics of water, carbon and nitrogen in a California chaparral ecosystem: DAYCENT modeling results. Biogeochemistry 77:217–45. doi: 10.1007/s10533-005-1391-z.CrossRefGoogle Scholar
  55. McMaster GS, Jow WM, Kummerow J. 1982. Response of Adenostoma fasciculatum and Ceanothus greggii chaparral to nutrient additions. J Ecol 70:745–56. doi: 10.2307/2260102.CrossRefGoogle Scholar
  56. Miller AE, Schimel JP, Sickman JO, Skeen K, Meixner T, Melack JM. 2009. Seasonal variation in nitrogen uptake and turnover in two high-elevation soils: mineralization responses are site-dependent. Biogeochemistry 93:253–70. doi: 10.1007/s10533-009-9301-4.CrossRefGoogle Scholar
  57. Miller JD, Thode AE. 2007. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens Environ 109:66–80. doi: 10.1016/j.rse.2006.12.006.CrossRefGoogle Scholar
  58. Moritz MA. 2003. Spatiotemporal analysis of controls on shrubland fire regimes: age dependency and fire hazard. Ecology 84:351–61. doi: 10.1890/0012-9658(2003)084[0351:SAOCOS]2.0.CO;2.CrossRefGoogle Scholar
  59. Moritz MA. 1997. Analyzing extreme disturbance events: fire in los padres national forest. Ecol Appl 7:1252–62. doi: 10.1890/1051-0761(1997)007[1252:AEDEFI]2.0.CO;2.CrossRefGoogle Scholar
  60. Neary DG, Klopatek CC, DeBano LF, Ffolliott PF. 1999. Fire effects on belowground sustainability: a review and synthesis. For Ecol Manag 122:51–71. doi: 10.1016/S0378-1127(99)00032-8.CrossRefGoogle Scholar
  61. NRCS. 2015. Description of Gridded Soil Survey Geographic (gSSURGO) Database|NRCS [WWW Document]. (accessed 5.17.15).
  62. O’Leary JF. 1988. Habitat differentiation among herbs in postburn Californian chaparral and coastal sage scrub. Am Midl Nat 120:41–9. doi: 10.2307/2425885.CrossRefGoogle Scholar
  63. Parker SS, Schimel JP. 2011. Soil nitrogen availability and transformations differ between the summer and the growing season in a California grassland. Appl Soil Ecol 48:185–92. doi: 10.1016/j.apsoil.2011.03.007.CrossRefGoogle Scholar
  64. Quinn GP, Keough MJ. 2002. Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  65. Raison RJ. 1979. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant Soil 51:73–108. doi: 10.1007/BF02205929.CrossRefGoogle Scholar
  66. Riggan PJ, Goode S, Jacks PM, Lockwood RN. 1988. Interaction of fire and community development in chaparral of Southern California. Ecol Monogr 58:156–76. doi: 10.2307/2937023.CrossRefGoogle Scholar
  67. Roth KL, Dennison PE, Roberts DA. 2012. Comparing endmember selection techniques for accurate mapping of plant species and land cover using imaging spectrometer data. Remote Sens Environ 127:139–52. doi: 10.1016/j.rse.2012.08.030.CrossRefGoogle Scholar
  68. Rundel PW, Parsons DJ. 1984. Post-fire uptake of nutrients by diverse ephemeral herbs in chamise chaparral. Oecologia 61:285–8. doi: 10.1007/BF00396774.CrossRefGoogle Scholar
  69. Schimel JP, Bennett J. 2004. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602. doi: 10.1890/03-8002.CrossRefGoogle Scholar
  70. Schlesinger WH, Gill DS. 1980. Biomass, production, and changes in the availability of light, water, and nutrients during the development of pure stands of the chaparral shrub, Ceanothus Megacarpus, after fire. Ecology 61:781–9. doi: 10.2307/1936748.CrossRefGoogle Scholar
  71. Schlesinger WH, Gray JT, Gilliam FS. 1982. Atmospheric deposition processes and their importance as sources of nutrients in a chaparral ecosystem of southern California. Water Resour Res 18:623–9. doi: 10.1029/WR018i003p00623.CrossRefGoogle Scholar
  72. Sheldrick BH, Wang C. 1993. Particle size distribution. Soil Sample Methods Anal. 1993:499–511.Google Scholar
  73. Ste-Marie C, Paré D. 1999. Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biol Biochem 31:1579–89. doi: 10.1016/S0038-0717(99)00086-3.CrossRefGoogle Scholar
  74. Swift CC. 1991. Nitrogen utilization strategies of post-fire annual species in the chaparral. UCLA.Google Scholar
  75. Syphard AD, Clarke KC, Franklin J. 2007a. Simulating fire frequency and urban growth in southern California coastal shrublands, USA. Landsc Ecol 22:431–45.CrossRefGoogle Scholar
  76. Syphard AD, Radeloff VC, Keeley JE, Hawbaker TJ, Clayton MK, Stewart SI, Hammer RB. 2007b. Human influence on california fire regimes. Ecol Appl 17:1388–402. doi: 10.1890/06-1128.1.CrossRefPubMedGoogle Scholar
  77. Thanos CA, Rundel PW. 1995. Fire-followers in chaparral: nitrogenous compounds trigger seed germination. J Ecol 83:207–16. doi: 10.2307/2261559.CrossRefGoogle Scholar
  78. Valeron B, Meixner T. 2010. Overland flow generation in chaparral ecosystems: temporal and spatial variability. Hydrol Process 24:65–75. doi: 10.1002/hyp.7455.Google Scholar
  79. Van Wagtendonk JW, Root RR, Key CH. 2004. Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sens Environ 92:397–408.CrossRefGoogle Scholar
  80. Verkaik I, Rieradevall M, Cooper SD, Melack JM, Dudley TL, Prat N. 2013. Fire as a disturbance in mediterranean climate streams. Hydrobiologia 719:353–82. doi: 10.1007/s10750-013-1463-3.CrossRefGoogle Scholar
  81. Vitousek P. 1982. Nutrient cycling and nutrient use efficiency. Am Nat 119:553–72.CrossRefGoogle Scholar
  82. Vitousek PM, Melillo JM. 1979. Nitrate losses from disturbed forests: patterns and mechanisms. For. Sci. 25:605–19.Google Scholar
  83. Vogl RJ. 1982. Chaparral succession 1.Google Scholar
  84. Zak DR, Groffman PM, Pregitzer KS, Christensen S, Tiedje JM. 1990. The Vernal dam: plant-microbe competition for nitrogen in Northern Hardwood Forests. Ecology 71:651–6. doi: 10.2307/1940319.CrossRefGoogle Scholar
  85. Zedler PH. 1995. Fire frequency in southern California shrublands: biological effects and management options. Brushfires Calif. Wildlands Ecol Resour Manag Int Assoc Wildland Fire Fairfld Wash USA, pp 101–112.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Erin J. Hanan
    • 1
  • Carla M. D’Antonio
    • 1
  • Dar A. Roberts
    • 2
  • Joshua P. Schimel
    • 1
  1. 1.Department of Ecology, Evolution and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraUSA
  2. 2.Department of GeographyUniversity of California Santa BarbaraSanta BarbaraUSA

Personalised recommendations