, Volume 19, Issue 4, pp 710–723 | Cite as

When Water Vanishes: Magnitude and Regulation of Carbon Dioxide Emissions from Dry Temporary Streams

  • Lluís Gómez-Gener
  • Biel Obrador
  • Rafael Marcé
  • Vicenç Acuña
  • Núria Catalán
  • Joan Pere Casas-Ruiz
  • Sergi Sabater
  • Isabel Muñoz
  • Daniel von Schiller


Most fluvial networks worldwide include watercourses that recurrently cease to flow and run dry. The spatial and temporal extent of the dry phase of these temporary watercourses is increasing as a result of global change. Yet, current estimates of carbon emissions from fluvial networks do not consider temporary watercourses when they are dry. We characterized the magnitude and variability of carbon emissions from dry watercourses by measuring the carbon dioxide (CO2) flux from 10 dry streambeds of a fluvial network during the dry period and comparing it to the CO2 flux from the same streambeds during the flowing period and to the CO2 flux from their adjacent upland soils. We also looked for potential drivers regulating the CO2 emissions by examining the main physical and chemical properties of dry streambed sediments and adjacent upland soils. The CO2 efflux from dry streambeds (mean ± SD = 781.4 ± 390.2 mmol m−2 day−1) doubled the CO2 efflux from flowing streambeds (305.6 ± 206.1 mmol m−2 day−1) and was comparable to the CO2 efflux from upland soils (896.1 ± 263.2 mmol m−2 day−1). However, dry streambed sediments and upland soils were physicochemically distinct and differed in the variables regulating their CO2 efflux. Overall, our results indicate that dry streambeds constitute a unique and biogeochemically active habitat that can emit significant amounts of CO2 to the atmosphere. Thus, omitting CO2 emissions from temporary streams when they are dry may overlook the role of a key component of the carbon balance of fluvial networks.


greenhouse gas emissions fluxes streams intermittent fluvial network drought dry streambeds 



This research was funded by the Spanish Ministry of Economy and Competitiveness through the Projects CGL2011-30474-C02-01 and CGL2014-58760-C3-1-R. Ll. Gómez-Gener and J. P. Casas-Ruiz were additionally supported by FPI predoctoral grants (BES-2012-059743 and BES-2012-059655). N. Catalán hold a Wenner-Gren post-doctoral grant (Sweden). We thank Maria Caselles, Sílvia de Castro and Marina Gubau, for field and laboratory assistance.

Supplementary material

10021_2016_9963_MOESM1_ESM.docx (3.6 mb)
Supplementary material 1 (DOCX 3649 kb)


  1. Acuña V, Giorgi A, Muñoz I, Sabater F, Sabater S. 2007. Meteorological and riparian influences on organic matter dynamics in a forested Mediterranean stream. J N Am Benthol Soc 26:54–69.CrossRefGoogle Scholar
  2. Acuña V, Datry T, Marshall J, Barceló D, Dahm CN, Ginebreda A, McGregor G, Sabater S, Tockner K, Palmer M. 2014. Why should we care about temporary waterways? Science 343:1080–2.CrossRefPubMedGoogle Scholar
  3. Amalfitano S, Fazi S, Zoppini A, Caracciolo AB, Grenni P, Puddu A. 2008. Responses of benthic bacteria to experimental drying in sediments from mediterranean temporary rivers. Microb Ecol 55:270–9.CrossRefPubMedGoogle Scholar
  4. Anesio AM, Theil-Nielsen J, Graneli W. 2000. Bacterial growth on photochemically transformed leachates from aquatic and terrestrial primary producers. Microb Ecol 40:200–8.PubMedGoogle Scholar
  5. Angert A, Yakir D, Rodeghiero M, Preisler Y, Davidson EA, Weiner T. 2014. Using O2 to study the relationships between soil CO2 efflux and soil respiration. Biogeosci Discuss 11:12039–68.CrossRefGoogle Scholar
  6. Aristegi L, Izagirre O, Elosegi A. 2009. Comparison of several methods to calculate reaeration in streams, and their effects on estimation of metabolism. Hydrobiologia 635:113–24.CrossRefGoogle Scholar
  7. Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM. 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–35.CrossRefPubMedGoogle Scholar
  8. Austin AT, Vivanco L. 2006. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–8.CrossRefPubMedGoogle Scholar
  9. Bade DL. 2009. Gas exchange across the air-water interface. In: Gene EL, Ed. Encyclopedia of Inland waters. Oxford: Academic Press. p 70–78.Google Scholar
  10. Belnap J, Welter JR, Grimm NB, Barger N, Ludwig JA. 2005. Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology 86:298–307.CrossRefGoogle Scholar
  11. Benstead JP, Leigh DS. 2012. An expanded role for river networks. Nat Geosci 5:678–9.CrossRefGoogle Scholar
  12. Birdwell JE, Engel AS. 2010. Characterization of dissolved organic matter in cave and spring waters using UV-Vis absorbance and fluorescence spectroscopy. Org Geochem 41:270–80.CrossRefGoogle Scholar
  13. Borken W, Matzner E. 2009. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Change Biol 15:808–24.CrossRefGoogle Scholar
  14. Boulton AJ. 1991. Eucalypt leaf decomposition in an intermittent stream in South-Eastern Australia. Hydrobiologia 211:123–36Google Scholar
  15. Boulton AJ. 2003. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshw Biol 48:1173–85.CrossRefGoogle Scholar
  16. Burke IC, Yonker CM, Parton WJ, Cole CV, Flach K, Schimel DS. 1989. Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Sci Soc Am J 53:800–5.CrossRefGoogle Scholar
  17. Buschiazzo DE, Estelrich HD, Aimar SB, Viglizzo E, Babinec FJ. 2004. Soil texture and tree coverage influence on organic matter. Rangel Ecol Manag 57:511–16.CrossRefGoogle Scholar
  18. Cable JM, Ogle K, Williams DG, Weltzin JF, Huxman TE. 2008. Soil texture drives responses of soil respiration to precipitation pulses in the Sonoran desert: implications for climate change. Ecosystems 11:961–79.CrossRefGoogle Scholar
  19. Casals P, Gimeno C, Carrara A, Lopez-Sangil L, Sanz M. 2009. Soil CO2 efflux and extractable organic carbon fractions under simulated precipitation events in a Mediterranean Dehesa. Soil Biol Biochem 41:1915–22.CrossRefGoogle Scholar
  20. Catalán N, von Schiller D, Marcé R, Koschorreck M, Gómez-Gener L, Obrador B. 2014. Carbon dioxide efflux during the flooding phase of temporary ponds. Limnetica 33:349–60.Google Scholar
  21. Chapman LJ, Kramer DL. 1991. The consequences of flooding for the dispersal and fate of poeciliid fish in an intermittent tropical stream. Oecologia 87:299–306.CrossRefGoogle Scholar
  22. Corvasce M, Zsolnay A, D’Orazio V, Lopez R, Miano TM. 2006. Characterization of water extractable organic matter in a deep soil profile. Chemosphere 62:1583–90.CrossRefPubMedGoogle Scholar
  23. Datry T, Larned ST, Tockner K. 2014. Intermittent rivers: a challenge for freshwater ecology. Bioscience 64:229–35.CrossRefGoogle Scholar
  24. Dean WE. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other method. J Sediment Petrol 44:242–8.Google Scholar
  25. Eriksson L, Johansson E, Kettaneh-Wold N, Wold S. 2001. Multi- and megavariate data analysis: principles and applications. Umea, Sweden: Umetrics AB.Google Scholar
  26. Fellman JB, Hood E, Spencer RGM. 2010. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol Oceanogr 55:2452–62.CrossRefGoogle Scholar
  27. Fierer N, Schimel JP. 2003. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci Soc Am J 67:798–805.CrossRefGoogle Scholar
  28. Gallo EL, Lohse KA, Ferlin CM, Meixner T, Brooks PD. 2014. Physical and biological controls on trace gas fluxes in semi-arid urban ephemeral waterways. Biogeochemistry 121:189–207.CrossRefGoogle Scholar
  29. Gómez-Gener L, Obrador B, von Schiller D, Marcé R, Casas Ruiz JP, Proia L, Acuña V, Catalán N, Muñoz I, Koschorreck M. 2015. Hot spots for carbon emissions from Mediterranean fluvial networks during summer drought. Biogeochemistry 19:1–18.Google Scholar
  30. Grogan P, Jonasson S. 2005. Temperature and substrate controls on intra-annual variation in ecosystem respiration in two subarctic vegetation types. Glob Change Biol 11:465–75.CrossRefGoogle Scholar
  31. Hickin EJ. 1995. River geomorphology. Chichester: Wiley.Google Scholar
  32. Hoerling M, Eischeid J, Perlwitz J, Quan X, Zhang T, Pegion P. 2012. On the increased frequency of Mediterranean drought. J Clim 25:2146–61.CrossRefGoogle Scholar
  33. Hornberger GM, Kelly MG. 1972. The determination of primary production in a stream using an exact solution to the oxygen balance equation. Water Resour Bull 8:795–801.CrossRefGoogle Scholar
  34. Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond JM, Parlanti E. 2009. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem 40:706–19.CrossRefGoogle Scholar
  35. Hunt RJ, Jardine TD, Hamilton SK, Bunn SE. 2012. Temporal and spatial variation in ecosystem metabolism and food web carbon transfer in a wet-dry tropical river. Freshw Biol 57:435–50.CrossRefGoogle Scholar
  36. Jacobson PJ, Jacobson KM, Angermeier PL, Cherry DS. 2000. Hydrologic influences on soil properties along ephemeral rivers in the Namib desert. J Arid Environ 45:21–34.CrossRefGoogle Scholar
  37. Jaffé R, McKnight D, Maie N, Cory R, McDowell WH, Campbell JL. 2008. Spatial and temporal variations in DOM composition in ecosystems: the importance of long-term monitoring of optical properties. J Geophys Res: Biogeosci 113:1–15.CrossRefGoogle Scholar
  38. Kaiser M, Kleber M, Berhe AA. 2015. How air-drying and rewetting modify soil organic matter characteristics: an assessment to improve data interpretation and inference. Soil Biol Biochem 80:324–40.CrossRefGoogle Scholar
  39. Kothawala DN, Murphy KR, Stedmon CA, Weyhenmeyer GA, Tranvik LJ. 2013. Inner filter correction of dissolved organic matter fluorescence. Limnol Oceanogr: Methods 11:616–30.CrossRefGoogle Scholar
  40. Larned ST, Datry T, Arscott DB, Tockner K. 2010. Emerging concepts in temporary-river ecology. Freshw Biol 55:717–38.CrossRefGoogle Scholar
  41. Lauerwald R, Laruelle GG, Hartmann J, Ciais P, Regnier G. 2015. Spatial patterns in CO2 evasion from the global river network. Global Biogeochem Cycl 29:534–54.CrossRefGoogle Scholar
  42. Leigh C, Boulton AJ, Courtwright JL, Fritz K, May CL, Walker RH, Datry T. 2015. Ecological research and management of intermittent rivers: an historical review and future directions. Freshwater Biology. doi: 10.1111/fwb.12646.
  43. Livingston GP, Hutchinson GL. 1995. Enclosure-based measurement of trace gas exchange: applications and sources of error. In: Matson PA, Harriss RC, Eds. Biogenic trace gases: measuring emissions from soil and water. Oxford: Blackwell Scientific Publications. p 14–51.Google Scholar
  44. Lowe WH, Likens GE, Power ME. 2006. Linking scales in stream ecology. Bioscience 56:591–7.CrossRefGoogle Scholar
  45. McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G. 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–12.CrossRefGoogle Scholar
  46. Mcknight DM, Niyogi DK, Alger AS, Bomblies A, Peter A, Tate CM, Conovitz A, Mcknight DM, Niyogi DEVK, Bomblies A, Tate M. 2008. Valley streams Antarctica: ecosystems waiting for water. Bioscience 49:985–95.CrossRefGoogle Scholar
  47. McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT. 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48.CrossRefGoogle Scholar
  48. McLean EO. 1982. Soil pH and lime requirement. In: Page AL, Ed. Methods of soil analysis, part 2: chemical and microbiological properties. Madison: American Society of Agronomy Inc. p 199–224.Google Scholar
  49. Mielnick PC, Dugas WA. 2000. Soil CO2 flux in a tallgrass prairie. Soil Biol Biochem 32:221–8.CrossRefGoogle Scholar
  50. Millero F. 1995. Thermodynamics of the carbon dioxide system in the oceans. Geochim Cosmochim Acta 59:661–77.CrossRefGoogle Scholar
  51. Naiman RJ, Decamps H. 1997. The ecology of interfaces: riparian zones. Annu Rev Ecol Syst 28:621–58.CrossRefGoogle Scholar
  52. Noy-Meir I. 1973. Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51.CrossRefGoogle Scholar
  53. Oksanen, J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. 2013. Vegan: community ecology package. R package version 2.0–10.
  54. Palmer MA, Reidy Liermann CA, Nilsson C, Flörke M, Alcamo J, Lake PS, Bond N. 2008. Climate change and the world’s river basins: anticipating management options. Front Ecol Environ 6:81–9.CrossRefGoogle Scholar
  55. Paré MC, Bedard-Haughn A. 2013. Soil organic matter quality influences mineralization and GHG emissions in cryosols: a field-based study of sub- to high Arctic. Glob Change Biol 19:1126–40.CrossRefGoogle Scholar
  56. Pohlon E, Ochoa Fandino A, Marxsen J. 2013. Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting. PLoS One 8:e83365.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Raich J, Potter C, Bhagawati D. 2002. Interannual variability in global soil respiration, 1980–94. Glob Chang Biol 8:800–12.CrossRefGoogle Scholar
  58. Raich J, Schlesinger W. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44:81–99.CrossRefGoogle Scholar
  59. Raymond PA, Zappa CJ, Butman D, Bott TL, Potter J, Mulholland P, Laursen AE, McDowell WH, Newbold D. 2012. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceanogr: Fluids Environ 2:41–53.CrossRefGoogle Scholar
  60. Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P. 2013. Global carbon dioxide emissions from inland water. Nature 503:355–9.CrossRefPubMedGoogle Scholar
  61. Redeker KR, Baird AJ, Teh YA. 2015. Quantifying wind and pressure effects on trace gas fluxes across the soil–atmosphere interface. Biogeosci Discuss 12:4801–32.CrossRefGoogle Scholar
  62. Rey A. 2015. Mind the gap: non-biological processes contributing to soil CO2 efflux. Glob Change Biol 21:1752–61.CrossRefGoogle Scholar
  63. Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–20.CrossRefPubMedGoogle Scholar
  64. Riley AJ, Dodds WK. 2013. Whole-stream metabolism: strategies for measuring and modeling diel trends of dissolved oxygen. Freshw Sci 32:56–69.CrossRefGoogle Scholar
  65. Sheldon F, Bunn SE, Hughes JM, Arthington AH, Balcombe SR, Fellows CS. 2010. Ecological roles and threats to aquatic refugia in arid landscapes: dryland river waterholes. Mar Freshw Res 61:885–95.CrossRefGoogle Scholar
  66. Stanley E, Fisher S, Grimm N. 1997. Ecosystem expansion and contraction in streams. Bioscience 47:427–35.CrossRefGoogle Scholar
  67. Steward AL, von Schiller D, Tockner K, Marshall JC, Bunn SE. 2012. When the river runs dry: human and ecological values of dry riverbeds. Front Ecol Environ 10:202–9.CrossRefGoogle Scholar
  68. Suleau M, Debacq A, Dehaes V, Aubinet M. 2009. Wind velocity perturbation of soil respiration measurements using closed dynamic chambers. Eur J Soil Sci 60:515–24.CrossRefGoogle Scholar
  69. Teodoru CR, Prairie YT, Del Giorgio PA. 2010. Spatial heterogeneity of surface CO2 fluxes in a newly created eastmain-1 reservoir in Northern Quebec, Canada. Ecosystems 14:28–46.CrossRefGoogle Scholar
  70. Timoner X, Acuña V, von Schiller D, Sabater S. 2012. Functional responses of stream biofilms to flow cessation, desiccation and rewetting. Freshw Biol 57:1565–78.CrossRefGoogle Scholar
  71. von Schiller D, Marcé R, Obrador B, Gómez-Gener L, Casas-Ruiz JP, Acuña V, Koschorreck M. 2014. Carbon dioxide emissions from dry watercourses. Inland Water 4:377–82.CrossRefGoogle Scholar
  72. Vergnoux A, Di Rocco R, Domeizel M, Guiliano M, Doumenq P, Théraulaz F. 2011. Effects of forest fires on water extractable organic matter and humic substances from Mediterranean soils: UV-vis and fluorescence spectroscopy approaches. Geoderma 160:434–43.CrossRefGoogle Scholar
  73. Wagener SM, Oswood MW, Schimel JP. 1998. Rivers and soils: parallels in carbon and nutrient processing. Bioscience 48:104–8.CrossRefGoogle Scholar
  74. Wanninkhof R. 1992. Relationship between wind speed and gas exchange over the ocean. J Geophys Res: Oceans 97:7373–82.CrossRefGoogle Scholar
  75. Wehrli B. 2013. Conduits of the carbon cycle. Nature 503:9–10.CrossRefGoogle Scholar
  76. Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K. 2003. Evaluation of specific ultra-violet absorbance as an indicator of the chemical content of dissolved organic carbon. Environ Chem 41:843–5.Google Scholar
  77. Weiss R. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–15.CrossRefGoogle Scholar
  78. Wold S, Sjöström M, Eriksson L. 2001. PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst 58:109–30.CrossRefGoogle Scholar
  79. Zoppini A, Marxsen J. 2011. Importance of extracellular enzymes for biogeochemical processes in temporary river sediments during fluctuating dry-wet Conditions. In: Shukla G, Varma A, Eds. Soil enzymology. Berlin: Springer. p 103–17.Google Scholar
  80. Zsolnay A, Baigar E, Jimenez M, Steinweg B, Saccomandi F. 1999. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere 38:45–50.CrossRefPubMedGoogle Scholar
  81. Zuur AF, Ieno EN, Elphick CS. 2010. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lluís Gómez-Gener
    • 1
  • Biel Obrador
    • 1
  • Rafael Marcé
    • 2
  • Vicenç Acuña
    • 2
  • Núria Catalán
    • 3
  • Joan Pere Casas-Ruiz
    • 2
  • Sergi Sabater
    • 2
  • Isabel Muñoz
    • 1
  • Daniel von Schiller
    • 4
  1. 1.Department of EcologyUniversity of BarcelonaBarcelonaSpain
  2. 2.Catalan Institute for Water ResearchScientific and Technological Park of the University of GironaGironaSpain
  3. 3.Limnology, Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
  4. 4.Department of Plant Biology and Ecology, Faculty of Science and TechnologyUniversity of the Basque CountryBilbaoSpain

Personalised recommendations