Ecosystems

, Volume 20, Issue 6, pp 1205–1216 | Cite as

Carbon Dioxide and Methane Fluxes From Tree Stems, Coarse Woody Debris, and Soils in an Upland Temperate Forest

  • Daniel L. Warner
  • Samuel Villarreal
  • Kelsey McWilliams
  • Shreeram Inamdar
  • Rodrigo Vargas
Article

Abstract

Forest soils and canopies are major components of ecosystem CO2 and CH4 fluxes. In contrast, less is known about coarse woody debris and living tree stems, both of which function as active surfaces for CO2 and CH4 fluxes. We measured CO2 and CH4 fluxes from soils, coarse woody debris, and tree stems over the growing season in an upland temperate forest. Soils were CO2 sources (4.58 ± 2.46 µmol m−2 s−1, mean ± 1 SD) and net sinks of CH4 (−2.17 ± 1.60 nmol m−2 s−1). Coarse woody debris was a CO2 source (4.23 ± 3.42 µmol m−2 s−1) and net CH4 sink, but with large uncertainty (−0.27 ± 1.04 nmol m−2 s−1) and with substantial differences depending on wood decay status. Stems were CO2 sources (1.93 ± 1.63 µmol m−2 s−1), but also net CH4 sources (up to 0.98 nmol m−2 s−1), with a mean of 0.11 ± 0.21 nmol m−2 s−1 and significant differences depending on tree species. Stems of N. sylvatica, F. grandifolia, and L. tulipifera consistently emitted CH4, whereas stems of A. rubrum, B. lenta, and Q. spp. were intermittent sources. Coarse woody debris and stems accounted for 35% of total measured CO2 fluxes, whereas CH4 emissions from living stems offset net soil and CWD CH4 uptake by 3.5%. Our results demonstrate the importance of CH4 emissions from living stems in upland forests and the need to consider multiple forest components to understand and interpret ecosystem CO2 and CH4 dynamics.

Keywords

carbon cycle forested watershed biogeochemistry methane carbon dioxide 

References

  1. Ambus P, Christensen S. 1995. Spatial and seasonal nitrous oxide and methane fluxes in Danish forest-, grassland-, and agroecosystems. J Environ Qual 24:993.CrossRefGoogle Scholar
  2. Amthor JS. 1984. The role of maintenance respiration in plant growth. Plant Cell Environ 7:561–9.Google Scholar
  3. Atkins JW, Epstein HE, Welsch DL. 2014. Vegetation heterogeneity and landscape position exert strong controls on soil CO2 efflux in a moist, Appalachian watershed. Biogeosciences 11:17631–73.CrossRefGoogle Scholar
  4. Butenhoff CL, Khalil MAK. 2007. Global methane emissions from terrestrial plants. Environ Sci Technol 41:4032–7.CrossRefPubMedGoogle Scholar
  5. Carmichael MJ, Bernhardt ES, Bräuer SL, Smith WK. 2014. The role of vegetation in methane flux to the atmosphere: should vegetation be included as a distinct category in the global methane budget? Biogeochemistry 119:1–24.CrossRefGoogle Scholar
  6. Ceschia É, Damesin C, Lebaube S, Pontailler JY, Dufrêne É. 2002. Spatial and seasonal variations in stem respiration of beech trees (Fagus sylvatica). Ann For Sci 59:801–12.CrossRefGoogle Scholar
  7. Covey KR, Wood SA, Warren RJ, Lee X, Bradford MA. 2012. Elevated methane concentrations in trees of an upland forest. Geophys Res Lett 39:L15705. doi:10.1029/2012GL052361.CrossRefGoogle Scholar
  8. Creed IF, Webster KL, Braun GL, Bourbonnière RA, Beall FD. 2013. Topographically regulated traps of dissolved organic carbon create hotspots of soil carbon dioxide efflux in forests. Biogeochemistry 112:149–64. doi:10.1007/s10533-012-9713-4.CrossRefGoogle Scholar
  9. Crill PM. 1991. Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil. Global Biogeochem Cycles 5:319–34.CrossRefGoogle Scholar
  10. Davidson EA, Belk E, Boone RD. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biol 4:217–27. doi:10.1046/j.1365-2486.1998.00128.x.CrossRefGoogle Scholar
  11. Delaware Environmental Observing System (DEOS). 2014. Newark, DE: University of Delaware.Google Scholar
  12. Del Grosso SJ, Parton WJ, Mosier AR, Ojima DS, Potter CS, Brumme R, Crill PM, Dobbie K, Smith KA. 2000. General CH4 oxidation model and comparisons of CH4 oxidation in natural and managed systems. Global Biogeochem Cycles 14:999–1019.CrossRefGoogle Scholar
  13. Dlugokencky EJ, Nisbet EG, Fisher R, Lowry D. 2011. Global atmospheric methane: budget, changes and dangers. Philos Trans Ser A Math Phys Eng Sci 369:2058–72.CrossRefGoogle Scholar
  14. Edwards NT, Hanson PJ. 1996. Stem respiration in a closed-canopy upland oak forest. Tree Physiol 16:433–9. http://treephys.oxfordjournals.org/content/16/4/433.abstract
  15. Edwards NT, Mclaughlin SB. 1978. Temperature-independent diel variations of respiration rates in Quercus alba and Liriodendron tulipifera. Oikos 31:200–6.CrossRefGoogle Scholar
  16. Eklund L. 2000. Internal oxygen levels decrease during the growing season and with increasing stem height. Trees 14:177–80. doi:10.1007/PL00009761.CrossRefGoogle Scholar
  17. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D, Haywood J, Lean J, Lowe D, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R. 2007. Changes in atmospheric constituents and in radiative forcing. In: Nakajima T, Ramanathan V, editors. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 129–234. http://en.scientificcommons.org/23467316
  18. Fukami T, Dickie IA, Paula Wilkie J, Paulus BC, Park D, Roberts A, Buchanan PK, Allen RB. 2010. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett 13:675–84.CrossRefPubMedGoogle Scholar
  19. Gough CM, Vogel CS, Kazanski C, Nagel L, Flower CE, Curtis PS. 2007. Coarse woody debris and the carbon balance of a north temperate forest. For Ecol Manag 244:60–7.CrossRefGoogle Scholar
  20. Hanson PJ, Wullschleger SD, Bohlman SA, Todd DE. 1993. Seasonal and topographic patterns of forest floor CO2 efflux from an upland oak forest. Tree Physiol 13:1–15. doi:10.1093/treephys/13.1.1.CrossRefPubMedGoogle Scholar
  21. Harmon M, Franklin J, Swanson F, Sollins P, Gregory S, Lattin J, Anderson N, Cline S, Aumen N, Sedell J, Lienkaemper G, Cromack K, Cummins K. 1986. Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15:133–302. doi:10.1016/S0065-2504(03)34002-4.CrossRefGoogle Scholar
  22. Harmon ME, Bond-Lamberty B, Tang J, Vargas R. 2011. Heterotrophic respiration in disturbed forests: a review with examples from North America. J Geophys Res Biogeosci 116:1–17.CrossRefGoogle Scholar
  23. Inamdar S, Finger N, Singh S, Mitchell M, Levia D, Bais H, Scott D, McHale P. 2011. Dissolved organic matter (DOM) concentration and quality in a forested mid-Atlantic watershed, USA. Biogeochemistry 108:55–76. doi:10.1007/s10533-011-9572-4.CrossRefGoogle Scholar
  24. Keppler F, Hamilton JTG, McRoberts WC, Vigano I, Braß M, Röckmann T. 2008. Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies. New Phytol 178:808–14.CrossRefPubMedGoogle Scholar
  25. Lenhart K, Bunge M, Ratering S, Neu TR, Schüttmann I, Greule M, Kammann C, Schnell S, Müller C, Zorn H, Keppler F. 2012. Evidence for methane production by saprotrophic fungi. Nat Commun 3:1046.CrossRefPubMedGoogle Scholar
  26. Lloyd J, Taylor JA. 1994. On the temperature dependence of soil respiration. Funct Ecol 8:315–23. http://www.jstor.org/stable/2389824?origin=crossref. Last accessed 30/10/2014
  27. Mosier AR, Parton WJ, Valentine DW, Schimel DS. 1996. CH4 and N2O fluxes in the Colorado shortgrass steppe: 1. Impact of landscape and nitrogen addition. Global Biogeochem Cycles 10:387–99.CrossRefGoogle Scholar
  28. Mukhin VA, Voronin PY. 2008. A new source of methane in boreal forests. Prikladnaia biokhimiia i mikrobiologiia 44:330–2.PubMedGoogle Scholar
  29. Mukhin VA, Voronin PY. 2011. Methane emission from living tree wood. Russ J Plant Physiol 58:344–50. doi:10.1134/S1021443711020117.CrossRefGoogle Scholar
  30. Neubauer SC, Megonigal JP. 2015. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18:1000–13. doi:10.1007/s10021-015-9879-4.CrossRefGoogle Scholar
  31. Ngao J, Epron D, Delpierre N, Bréda N, Granier A, Longdoz B. 2012. Spatial variability of soil CO2 efflux linked to soil parameters and ecosystem characteristics in a temperate beech forest. Agric For Meteorol 154–155:136–46.CrossRefGoogle Scholar
  32. Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church J a., Clarke L, Dahe Q, Dasgupta P, Dubash NK, Edenhofer O, Elgizouli I, Field CB, Forster P, Friedlingstein P, Fuglestvedt J, Gomez-Echeverri L, Hallegatte S, Hegerl G, Howden M, Jiang K, Cisneros BJ, Kattsov V, Lee H, Mach KJ, Marotzke J, Mastrandrea MD, Meyer L, Minx J, Mulugetta Y, O’Brien K, Oppenheimer M, Pereira JJ, Pichs-Madruga R, Plattner G-K, Pörtner H-O, Power SB, Preston B, Ravindranath NH, Reisinger A, Riahi K, Rusticucci M, Scholes R, Seyboth K, Sokona Y, Stavins R, Stocker TF, Tschakert P, Vuuren D Van, Ypersele J-P Van. 2014. IPCC climate change 2014: synthesis report.Google Scholar
  33. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. 2011. A large and persistent carbon sink in the world’s forests. Science 333:988–93. doi:10.1126/science.1201609.CrossRefPubMedGoogle Scholar
  34. Pangala SR, Moore S, Hornibrook ERC, Gauci V. 2013. Trees are major conduits for methane egress from tropical forested wetlands. New Phytol 197:524–31.CrossRefPubMedGoogle Scholar
  35. Pearson AJ, Pizzuto JE, Vargas R. 2016. Influence of run of river dams on floodplain sediments and carbon dynamics. Geoderma 272:51–63.CrossRefGoogle Scholar
  36. Pumpanen J, Kolari P, Ilvesniemi H, Minkkinen K, Vesala T, Niinistö S, Lohila A, Larmola T, Morero M, Pihlatie M, Janssens I, Yuste JC, Grünzweig JM, Reth S, Subke JA, Savage K, Kutsch W, Østreng G, Ziegler W, Anthoni P, Lindroth A, Hari P. 2004. Comparison of different chamber techniques for measuring soil CO2 efflux. Agric For Meteorol 123:159–76.CrossRefGoogle Scholar
  37. R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://R-project.org.
  38. Raich JW, Potter CS. 1995. Global patterns of carbon dioxide emissions from soils. Global Biogeochem Cycles 9:23–36. doi:10.1029/94GB02723.CrossRefGoogle Scholar
  39. Rice AL, Butenhoff CL, Shearer MJ, Teama D, Rosenstiel TN, Khalil MAK. 2010. Emissions of anaerobically produced methane by trees. Geophys Res Lett 37:1–6.CrossRefGoogle Scholar
  40. Rodhe H. 1990. A comparison of the contribution of various gases to the greenhouse effect. Science 248:1217–9. http://www.ncbi.nlm.nih.gov/pubmed/17809907. Last accessed 21 Dec 2014
  41. Russell MB, Woodall CW, Fraver S, D’Amato AW, Domke GM, Skog KE. 2014. Residence times and decay rates of downed woody debris biomass/carbon in eastern US forests. Ecosystems 17:765–77. doi:10.1007/s10021-014-9757-5.CrossRefGoogle Scholar
  42. Ryan MG, Cavaleri MA, Almeida AC, Penchel R, Senock RS, Luiz Stape J. 2009. Wood CO2 efflux and foliar respiration for Eucalyptus in Hawaii and Brazil. Tree Physiol 29:1213–22.CrossRefPubMedGoogle Scholar
  43. Scheffer TC. 1966. Natural resistance of wood to microbial deterioration. Annu Rev Phytopathol 4:147–68.CrossRefGoogle Scholar
  44. Smith KA, Dobbie KE, Ball BC, Bakken LR, Sitaula BK, Hansen S, Brumme R, Borken W, Christensen S, Priemé A, Fowler D, Macdonald JA, Skiba U, Klemedtsson L, Kasimir-Klemedtsson A, Degórska A, Orlanski P. 2000. Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Global Change Biol 6:791–803.CrossRefGoogle Scholar
  45. Steudler PA, Bowden RD, Melillo JM, Aber JD. 1989. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature 341:314–16. doi:10.1038/341314a0.CrossRefGoogle Scholar
  46. Tarvainen L, Räntfors M, Wallin G. 2014. Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand. Tree Physiol 34:488–502.CrossRefPubMedGoogle Scholar
  47. Terazawa K, Ishizuka S, Sakata T, Yamada K, Takahashi M. 2007. Methane emissions from stems of Fraxinus mandshurica var. japonica trees in a floodplain forest. Soil Biol Biochem 39:2689–92.CrossRefGoogle Scholar
  48. Terazawa K, Yamada K, Ohno Y, Sakata T, Ishizuka S. 2015. Spatial and temporal variability in methane emissions from tree stems of Fraxinus mandshurica in a cool-temperate floodplain forest. Biogeochemistry 123:349–62.CrossRefGoogle Scholar
  49. Teskey RO, Saveyn A, Steppe K, McGuire MA. 2008. Origin, fate and significance of CO2 in tree stems. New Phytol 177:17–32.PubMedGoogle Scholar
  50. Vigano I, van Weelden H, Holzinger R, Keppler F, Röckmann T. 2008. Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components. Biogeosciences 5:243–70.CrossRefGoogle Scholar
  51. Vito M, Muggeo R. 2008. Segmented: an R package to fit regression models with broken-line relationships. R News 8(1):20–5.Google Scholar
  52. Wang ZP, Gu Q, Deng FD, Huang JH, Megonigal JP, Yu Q, Lü XT, Li LH, Chang S, Zhang YH, Feng JC, Han XG. 2016. Methane emissions from the trunks of living trees on upland soils. New Phytol 211:429–39. doi:10.1111/nph.13909.CrossRefPubMedGoogle Scholar
  53. Webster KL, Creed IF, Bourbonnière RA, Beall FD. 2008. Controls on the heterogeneity of soil respiration in a tolerant hardwood forest. J Geophys Res 113:G03018. doi:10.1029/2008JG000706.Google Scholar
  54. Zeikus JG, Ward JC. 1974. Methane formation in living trees: a microbial origin. Science 184:1181–3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Daniel L. Warner
    • 1
  • Samuel Villarreal
    • 1
  • Kelsey McWilliams
    • 2
  • Shreeram Inamdar
    • 1
  • Rodrigo Vargas
    • 1
  1. 1.Department of Plant and Soil SciencesUniversity of DelawareNewarkUSA
  2. 2.Department of Civil and Environmental EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations