, Volume 20, Issue 6, pp 1217–1232 | Cite as

Leaf Litter Fuels Methanogenesis Throughout Decomposition in a Forested Peatland

  • Elizabeth M. Corteselli
  • James C. Burtis
  • Alexis K. Heinz
  • Joseph B. YavittEmail author


Decomposing leaf litter is a large supply of energy and nutrients for soil microorganisms. How long decaying leaves continue to fuel anaerobic microbial activity in wetland ecosystems is poorly understood. Here, we compare leaf litter from 15 tree species with different growth forms (angiosperms and gymnosperms, deciduous, and longer life span), using litterbags positioned for up to 4 years in a forested peatland in New York State. Periodically, we incubated partially decayed residue per species with fresh soil to assess its ability to fuel microbial methane (CH4) production and concomitant anaerobic carbon dioxide (CO2) production. Decay rates varied by leaf type: deciduous angiosperm > evergreen gymnosperm > deciduous gymnosperm. Decay rates were slower in leaf litter with a large concentration of lignin. Soil with residue of leaves decomposed for 338 days had greater rates of CH4 production (5.8 µmol g−1 dry mass d−1) than less decomposed (<0.42 µmol g−1 dry mass d−1) or more decomposed (2.1 µmol g−1 dry mass d−1) leaf residue. Species-driven differences in their ability to fuel CH4 production were evident throughout the study, whereas concomitant rates of CO2 production were more similar among species and declined with degree of decomposition. Methane production rates exhibited a positive correlation with pectin and the rate of pectin decomposition. This link between leaf litter decay rates, biochemical components in leaves, and microorganisms producing greenhouse gases should improve predictions of CH4 production in wetlands.


angiosperm deciduous decomposition evergreen functional traits gymnosperm litter quality methane production New York State pectin wetland 



This work was supported by a US Department of Agriculture, National Institute of Food and Agriculture, Hatch grant (Grant No. NYC-147498). Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the National Institute of Food and Agriculture (NIFA) or the United States Department of Agriculture (USDA). We also appreciate support from the Hunter R. Rawlings III Cornell Presidential Research Scholars (RCPRS) program at Cornell University. Several undergraduate students at Cornell provided wonderful assistance with the biochemical analyses and gas production measurements.

Supplementary material

10021_2016_105_MOESM1_ESM.docx (213 kb)
Supplementary material 1 (DOCX 213 kb)


  1. Aneja MK, Sharma S, Fleischmann F, Stich S, Heller W, Bahnweg G, Munch JC, Schloter M. 2006. Microbial colonization of beech and spruce litter—influence of decomposition site and plant litter species on the diversity of microbial community. Microb Ecol 52:127–35.CrossRefPubMedGoogle Scholar
  2. Berg B. 2014. Decomposition patterns for foliar litter—a theory for influencing factors. Soil Biol Biochem 78:222–32.CrossRefGoogle Scholar
  3. Berg B, Ekbohm G, McClaugherty C. 1984. Lignin and holocellulose relations during long-term decomposition of some forest litters. Long-term decomposition in a Scots pine forest. IV. Can J Bot 62:2540–50.CrossRefGoogle Scholar
  4. Bou Daher F, Braybrook SA. 2015. How to let go: pectin and plant cell adhesion. Front Plant Sci 6:253.Google Scholar
  5. Carpita NC. 1984. Fractionation of hemicelluloses from maize cell walls with increasing concentrations of alkali. Phytochemistry 23:1089–93.CrossRefGoogle Scholar
  6. Chang SX, Robison DJ. 2003. Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter. For Ecol Manag 181:331–8.CrossRefGoogle Scholar
  7. Chapin FS, Bret-Harte MS, Hobbie SE, Zhong H. 1996. Plant functional types as predictors of transient responses of arctic vegetation to global change. J Veg Sci 7:347–58.CrossRefGoogle Scholar
  8. Chapman HD, Morris VJ, Selvendran RR, O’Neill MA. 1987. Static and dynamic light-scattering studies of pectic polysaccharides from the middle lamellae and primary cell walls of cider apples. Carbohyd Res 165:53–68.CrossRefGoogle Scholar
  9. Chen FS, Duncan DS, Hu XF, Liang C. 2014. Exogenous nutrient manipulations alter endogenous extractability of carbohydrates in decomposing foliar litters under a typical mixed forest of subtropics. Geoderma 214:19–24.CrossRefGoogle Scholar
  10. Coldwell BB, DeLong WA. 1950. Studies of the composition of deciduous forest tree leaves before and after partial decomposition. Sci Agric 30:456–66.Google Scholar
  11. Colebatch G, Desbrosses G, Ott T, Krusell L, Montanari O, Kloska S, Kopka J, Udvardi MK. 2004. Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J 39:487–512.CrossRefPubMedGoogle Scholar
  12. Coles JRP, Yavitt JB. 2004. Linking belowground carbon allocation to anaerobic CH4 and CO2 production in a forested peatland, New York State. Geomicrobiol J 21:445–55.CrossRefGoogle Scholar
  13. Cornwell WK, Cornelissen JH, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, Van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–71.CrossRefPubMedGoogle Scholar
  14. Cosgrove DJ. 2005. Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–61.CrossRefPubMedGoogle Scholar
  15. Coûteaux MM, McTiernan KB, Berg B, Szuberla D, Dardenne P, Bottner P. 1998. Chemical composition and carbon mineralisation potential of Scots pine needles at different stages of decomposition. Soil Biol Biochem 30:583–95.CrossRefGoogle Scholar
  16. Dieleman CM, Branfireun BA, McLaughlin JW, Lindo Z. 2015. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability. Glob Change Biol 21:388–95.CrossRefGoogle Scholar
  17. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–6.CrossRefGoogle Scholar
  18. Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S. 2010. Diversity meets decomposition. Trends Ecol Evol 25:372–80.CrossRefPubMedGoogle Scholar
  19. Gupta NS, Yang H, Leng Q, Briggs DE, Cody GD, Summons RE. 2009. Diagenesis of plant biopolymers: decay and macromolecular preservation of Metasequoia. Org Geochem 40:802–9.CrossRefGoogle Scholar
  20. Harmon ME, Silver WL, Fasth B, Chen HU, Burke IC, Parton WJ, Hart SC, Currie WS. 2009. Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison. Glob Change Biol 15:1320–38.CrossRefGoogle Scholar
  21. Hättenschwiler S, Tiunov AV, Scheu S. 2005. Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218.CrossRefGoogle Scholar
  22. Heijmans MMPD, van der Knaap YAM, Holmgren M, Limpens J. 2013. Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events. Glob Change Biol 19:2240–50.CrossRefGoogle Scholar
  23. Hobbie SE. 2015. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30:357–63.CrossRefPubMedGoogle Scholar
  24. Hopkins DW, Webster EA, Chudek JA, Halpin C. 2001. Decomposition in soil of tobacco plants with genetic modifications to lignin biosynthesis. Soil Biol Biochem 33:1455–62.CrossRefGoogle Scholar
  25. Jenkins CC, Suberkropp K. 1995. The influence of water chemistry on the enzymatic degradation of leaves in streams. Freshw Biol 33:245–53.CrossRefGoogle Scholar
  26. Kasmi AE, Rajasekharan S, Ragsdale SW. 1994. Anaerobic pathway for conversion of the methyl group of aromatic methyl ethers to acetic acid by Clostridium thermoaceticum. Biochemistry 33:11217–24.CrossRefPubMedGoogle Scholar
  27. Keppler F, Hamilton JT, Braß M, Röckmann T. 2006. Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–91.CrossRefPubMedGoogle Scholar
  28. Klotzbucher T, Kaiser K, Guggenberger G, Gatzek C, Kalbitz K. 2011. A new conceptual model for the fate of lignin in decomposing plant litter. Ecology 92:1052–62.CrossRefPubMedGoogle Scholar
  29. Kok CJ, Haverkamp W, Van der Aa HA. 1992. Influence of pH on the growth and leaf-maceration ability of fungi involved in the decomposition of floating leaves of Nymphaea alba in an acid water. J Gen Microbiol 138:103–8.CrossRefGoogle Scholar
  30. Küsel K, Wagner C, Drake HL. 1999. Enumeration and metabolic product profiles of the anaerobic microflora in the mineral soil and litter of a beech forest. FEMS Microbiol Ecol 29:91–103.CrossRefGoogle Scholar
  31. Latter PM, Cragg JB. 1967. The decomposition of Juncus squarrosus leaves and microbiological changes in the profile of Juncus moor. J Ecol 55:465–82.CrossRefGoogle Scholar
  32. Lever MA, Heuer VB, Morono Y, Masui N, Schmidt F, Alperin MJ, Inagaki F, Hinrichs K-U, Teske A. 2010. Acetogenesis in deep subseafloor sediments of the Juan de Fuca Ridge Flank: a synthesis of geochemical, thermodynamic, and gene-based evidence. Geomicrobiol J 27:183–211.CrossRefGoogle Scholar
  33. Lindo Z, Gonzalez A. 2010. The bryosphere: an integral and influential component of the Earth’s biosphere. Ecosystems 13:612–27.CrossRefGoogle Scholar
  34. Maanen AV, Gourbière F. 1997. Host and geographical distribution of Verticicladium trifidum, Thysanophora penicillioides, and similar fungi on decaying coniferous needles. Can J Bot 75:699–710.CrossRefGoogle Scholar
  35. Makita N, Fujii S. 2015. Tree species effects on microbial respiration from decomposing leaf and fine root litter. Soil Biol Biochem 88:39–47.CrossRefGoogle Scholar
  36. McIver EE, Basinger JF. 1999. Early Tertiary floral evolution in the Canadian high Arctic. Ann MO Bot Gard 86:523–45.CrossRefGoogle Scholar
  37. McLeod AR, Newsham KK, Fry SC. 2007. Elevated UV-B radiation modifies the extractability of carbohydrates from leaf litter of Quercus robur. Soil Biol Biochem 39:116–26.CrossRefGoogle Scholar
  38. Melillo JM, Aber JD, Muratore JF. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–6.CrossRefGoogle Scholar
  39. Moore PD. 2002. The future of cool temperate bogs. Environ Conserv 29:3–20.CrossRefGoogle Scholar
  40. Moore TR, Trofymow JA, Siltanen M, Kozak LM. 2008. Litter decomposition and nitrogen and phosphorus dynamics in peatlands and uplands over 12 years in central Canada. Oecologia 157:317–25.CrossRefPubMedGoogle Scholar
  41. Moorhead DL, Lashermes G, Sinsabaugh RL, Weintraub MN. 2013. Calculating co-metabolic costs of lignin decay and their impacts on carbon use efficiency. Soil Biol Biochem 66:17–19.CrossRefGoogle Scholar
  42. Myers RT, Zak DR, White DC, Peacock A. 2001. Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Sci Soc Am J 65:359–67.CrossRefGoogle Scholar
  43. Niinemets Ü, Kull O. 1998. Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: implications for foliage morphological plasticity. Tree Physiol 18:467–79.CrossRefPubMedGoogle Scholar
  44. Niinemets Ü, Valladares F. 2006. Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecol Monogr 76:521–47.CrossRefGoogle Scholar
  45. Nilsson M, Öquist M. 2009. Partitioning litter mass loss into carbon dioxide and methane in peatland ecosystems. In: Baird AJ, Belyea LR, Comas X, Reeve AS, Slater LD, Eds. Carbon cycling in Northern peatlands. Washington: American Geophysical Union. p 131–44.CrossRefGoogle Scholar
  46. Olson JS. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–31.CrossRefGoogle Scholar
  47. Opsahl S, Benner R. 1995. Early diagenesis of vascular plant tissues: lignin and cutin decomposition and biogeochemical implications. Geochim Cosmochim Acta 59:4889–904.CrossRefGoogle Scholar
  48. Ordoñez JC, Van Bodegom PM, Witte JP, Wright IJ, Reich PB, Aerts R. 2009. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–49.CrossRefGoogle Scholar
  49. Pauly M, Keegstra K. 2008. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–68.CrossRefPubMedGoogle Scholar
  50. Pellerin S, Lavoie C. 2003. Recent expansion of jack pine in peatlands of southeastern Québec: a paleoecological study. Ecoscience 10:247–57.CrossRefGoogle Scholar
  51. Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter N, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC. 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234.CrossRefGoogle Scholar
  52. Preston CM, Nault JR, Trofymow JA. 2009. Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of “lignin”. Ecosystems 12:1078–102.CrossRefGoogle Scholar
  53. Rahman MM, Tsukamoto J. 2013. Leaf traits, litter decomposability and forest floor dynamics in an evergreen-and a deciduous-broadleaved forest in warm temperate Japan. Forestry 86:441–51.CrossRefGoogle Scholar
  54. Riggs CE, Hobbie SE, Cavender-Bares J, Savage JA, Wei X. 2015. Contrasting effects of plant species traits and moisture on the decomposition of multiple litter fractions. Oecologia 179:573–84.CrossRefPubMedGoogle Scholar
  55. Robroek BJM, Jassey VEJ, Kox MAR, Berendsen RL, Mills RTE, Cécillon L, Puissant J, Meima-Franke M, Bakker PAHM, Bodelier PLE. 2015. Peatland vascular plant functional types affect methane dynamics by altering microbial community structure. J Ecol 103:925–34.CrossRefGoogle Scholar
  56. Saha BC. 2003. Hemicellulose bioconversion. J Ind Microbiol Biot 30:279–91.CrossRefGoogle Scholar
  57. Sayer EJ. 2006. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev 81:1–31.CrossRefPubMedGoogle Scholar
  58. Schädel C, Blöchl A, Richter A, Hoch G. 2010. Quantification and monosaccharide composition of hemicelluloses from different plant functional types. Plant Physiol Biochem 48:1–8.CrossRefPubMedGoogle Scholar
  59. Schink B, Zeikus JG. 1982. Microbial ecology of pectin decomposition in anoxic lake sediments. J Gen Microbiol 128:393–404.Google Scholar
  60. Shevchik VE, Hugouvieux-Cotte-Pattat N. 1997. Identification of a bacterial pectin acetyl esterase in Erwinia chrysanthemi 3937. Mol Microbiol 24:1285–301.CrossRefPubMedGoogle Scholar
  61. Sundh I, Nilsson M, Granberg G, Svensson BH. 1994. Depth distribution of microbial production and oxidation of methane in northern boreal peatlands. Microb Ecol 27:253–65.CrossRefPubMedGoogle Scholar
  62. Taylor KA. 1995. A simple colormetric assay for muramic acid and acetic acid. Appl Biochem Biotechnol 56:49–58.CrossRefGoogle Scholar
  63. Treat CC, Natali SM, Ernakovich J, Iversen CM, Lupascu M, McGuire AD, Norby RJ, Roy Chowdhury T, Richter A, Šantrůčková H, Schädel C, Schuur EAG, Sloan VL, Turetsky MR, Waldrop MP. 2015. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations. Glob Change Biol 21:2787–803.CrossRefGoogle Scholar
  64. Urbanová M, Šnajdr J, Baldrian P. 2015. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol Biochem 84:53–64.CrossRefGoogle Scholar
  65. Van Arendonk JJCM, Poorter H. 1994. The chemical composition and anatomical structure of leaves of grass species differing in relative growth rate. Plant Cell Environ 17:963–70.CrossRefGoogle Scholar
  66. Van Soest PJ. 1994. Nutritional ecology of the ruminant. Ithaca: Cornell University Press.Google Scholar
  67. Wardle DA, Barker GM, Bonner KI, Nicholson KS. 1998. Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? J Ecol 86:405–20.CrossRefGoogle Scholar
  68. Westoby M. 1999. Generalization in functional plant ecology: the species sampling problem, plant ecology strategy schemes, and phylogeny. In: Pugnaire FI, Valladares F, Eds. Handbook of functional plant ecology. New York: Marcel Dekker, Inc. p 847–72.Google Scholar
  69. Witkamp M. 1966. Decomposition of leaf litter in relation to environment, microflora, and microbial respiration. Ecology 47:194–201.CrossRefGoogle Scholar
  70. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R. 2004. The worldwide leaf economics spectrum. Nature 428:821–7.CrossRefPubMedGoogle Scholar
  71. Yavitt JB, Seidman-Zager M. 2006. Methanogenic conditions in northern peat soils. Geomicrobiol J 23:119–27.CrossRefGoogle Scholar
  72. Yavitt JB, Williams CJ. 2015a. Conifer litter identity regulates anaerobic microbial activity in wetland soils via variation in leaf litter chemical composition. Geoderma 243:141–8.CrossRefGoogle Scholar
  73. Yavitt JB, Williams CJ. 2015b. Linking tree species identity to anaerobic microbial activity in a forested wetland soil via leaf litter decomposition and leaf carbon fractions. Plant Soil 390:293–305.CrossRefGoogle Scholar
  74. Yavitt JB, Williams CJ, Wieder RK. 1997. Production of methane and carbon dioxide in peatland ecosystems across North America: effects of temperature, aeration, and organic chemistry of peat. Geomicrobiol J 14:299–316.CrossRefGoogle Scholar
  75. Zinder SH. 1993. Physiological ecology of methanogens. In: Ferry JG, Ed. Methanogenesis: ecology, physiology, biochemistry and genetics. New York: Chapman and Hall. p 128–206.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Elizabeth M. Corteselli
    • 1
  • James C. Burtis
    • 1
  • Alexis K. Heinz
    • 1
  • Joseph B. Yavitt
    • 1
    Email author
  1. 1.Department of Natural ResourcesCornell UniversityIthacaUSA

Personalised recommendations