Ecosystems

pp 1–15

Short- and Long-term Influence of Litter Quality and Quantity on Simulated Heterotrophic Soil Respiration in a Lowland Tropical Forest

  • Laëtitia Bréchet
  • Valérie Le Dantec
  • Stéphane Ponton
  • Jean-Yves Goret
  • Emma Sayer
  • Damien Bonal
  • Vincent Freycon
  • Jacques Roy
  • Daniel Epron
Article

Abstract

Heterotrophic soil respiration (SRH) alone can contribute up to 50% of total ecosystem respiration in tropical forests. Whereas the abiotic controls of SRH have been extensively studied, the influence of plant traits is less well characterised. We used field experiments and a modelling approach to test the relative influence of plant traits on SRH in lowland tropical forest in French Guiana. We measured leaf- and root litter traits for five common tree species and conducted a root decomposition experiment to evaluate the influence of root chemistry on decay rates. We measured SRH in trenched plots and used our field measurements to parameterize and test the Century model of soil C dynamics. Overall, the Century model performed well in simulating SRH, and species-specific root decomposition in Century corresponded well to decomposition rates measured in situ. Root litter characterized by low lignin-to-nitrogen ratios decomposed more rapidly than low-quality root litter during the first 6 months. Model runs over different time scales revealed that litter quality substantially influenced SRH on an annual time-scale by determining the rates of root- and leaf litter decomposition. However, litter mass had an overriding influence on SRH over the longer term in 20-year model runs. Synthesis Using simple plant trait data to parameterise the Century model, we were able to accurately simulate changes in SRH in a lowland tropical forest. Our results suggest that this approach could be used to predict changes in tropical soil C dynamics under global change scenarios by including data on changes in plant productivity and C inputs to the soil (for example litterfall and root turnover).

Keywords

Century model decomposition leaf litter fine roots heterotrophic soil respiration sensitivity analysis soil carbon dynamics plant traits 

Supplementary material

10021_2016_104_MOESM1_ESM.docx (15.2 mb)
Supplementary material 1 (DOCX 15,535 kb)

References

  1. Aber JD, Melillo JM, McClaugherty CA. 1990. Predicting long-term patterns of mass-loss, nitrogen dynamics, and soil organic-matter formation from initial fine litter chemistry in temperate forest ecosystems. Can J Bot 68:2201–8.CrossRefGoogle Scholar
  2. Allié E, Pélissier R, Engel J, Pétronelli P, Freycon V, Deblauwe V, Soucémarianadin L, Weigel J, Baraloto C. 2015. Pervasive local-scale tree-soil habitat association in a tropical forest community. PLoS ONE 10:e0141488.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Berg B. 1986. Nutrient release from litter and humus in coniferous forest soils—a mini review. Scand J For Res 1:359–69.CrossRefGoogle Scholar
  4. Berg B, McClaugherty CA. 2008. Plant litter. Decomposition, humus formation, carbon sequestration. Helsinki: Springer.Google Scholar
  5. Bloomfield J, Vogt KA, Vogt DJ. 1993. Decay-rate and substrate quality of fine roots and foliage of 2 tropical tree species in the Luquillo-Experimental-Forest, Puerto-Rico. Plant Soil 150:233–45.CrossRefGoogle Scholar
  6. Bonal D, Bosc A, Ponton S, Goret JY, Burban B, Gross P, Bonnefond JM, Elbers J, Longdoz B, Epron D, Guehl JM, Granier A. 2008. Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana. Glob Change Biol 14:1917–33.CrossRefGoogle Scholar
  7. Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP. 1998. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–2.CrossRefGoogle Scholar
  8. Brant JB, Myrold DD, Sulzman EW. 2006. Root controls on soil microbial community structure in forest soils. Oecologia 148:650–9.CrossRefPubMedGoogle Scholar
  9. Bréchet L, Ponton S, Roy J, Freycon V, Couteaux MM, Bonal D, Epron D. 2009. Do tree species characteristics influence soil respiration in tropical forests? A test based on 16 tree species planted in monospecific plots. Plant Soil 319:235–46.CrossRefGoogle Scholar
  10. Bréchet L, Ponton S, Alméras T, Bonal D, Epron D. 2011. Does spatial distribution of tree size account for spatial heterogeneity in soil respiration in a tropical forest? Plant Soil 347:293–303.CrossRefGoogle Scholar
  11. Chambers JQ, Tribuzy ES, Toledo LC, Crispim BF, Higuchi N, dos Santos J, Araujo AC, Kruijt B, Nobre AD, Trumbore SE. 2004. Respiration from a tropical forest ecosystem: Partitioning of sources and low carbon use efficiency. Ecol Appl 14:S72–88.CrossRefGoogle Scholar
  12. Chang EH, Chung RS, Tsai YH. 2007. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci Plant Nutr 53:132–40.CrossRefGoogle Scholar
  13. Condit R, Hubbell SP, Foster RB. 2009. Changes in tree species abundance in a Neotropical forest: impact of climate change. J Trop Ecol 12:231–56.CrossRefGoogle Scholar
  14. Cornwell WK, Cornelissen JH, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–71.CrossRefPubMedGoogle Scholar
  15. Couteaux MM, Bottner P, Berg B. 1995. Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–6.CrossRefPubMedGoogle Scholar
  16. Davidson EA, Verchot LV, Cattanio JH, Ackerman IL, Carvalho JEM. 2000. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53–69.CrossRefGoogle Scholar
  17. Epron D, Farque L, Lucot E, Badot PM. 1999. Soil CO2 efflux in a beech forest: the contribution of root respiration. Ann For Sci 56:289–95.CrossRefGoogle Scholar
  18. Epron D, Le Dantec V, Dufrêne E, Granier A. 2001. Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration in a beech forest. Tree Physiol 21:145–52.CrossRefPubMedGoogle Scholar
  19. Epron D, Bosc A, Bonal D, Freycon V. 2006. Spatial variation of soil respiration across a topographic gradient in a tropical rainforest in French Guiana. J Trop Ecol 22:565–74.CrossRefGoogle Scholar
  20. Gill RA, Jackson RB. 2000. Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31.CrossRefGoogle Scholar
  21. Gourlet-Fleury S, Ferry B, Molino JF, Petronelli P, Schmitt L. 2004. Experimental plots: key features. In: Gourley-Fleury S, Guehl JM, Laroussinie O, Eds. Ecology and management of a neotropical rainforest: lessons drawn from Paracou, a longterm experimental research site in French Guiana. Paris: Elsevier. p 3–52.Google Scholar
  22. Grandy SA, Neff JC. 2008. Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci Total Environ 404:297–307.CrossRefPubMedGoogle Scholar
  23. Hattenschwiler S, Aeschlimann B, Couteaux MM, Roy J, Bonal D. 2008. High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol 179:165–75.CrossRefPubMedGoogle Scholar
  24. Hobbie SE. 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–22.CrossRefGoogle Scholar
  25. IUSS Working Group WRB. 2006. World reference base for soil resources. Rome: International Soil Reference and Information Centre, FAO.Google Scholar
  26. Ishizuka S, Iswandi A, Nakajima Y, Yonemura L, Sudo S, Tsuruta H, Muriyarso D. 2005. Spatial patterns of greenhouse gas emission in a tropical rainforest in Indonesia. Nutr Cycl Agroecosyst 71:55–62.CrossRefGoogle Scholar
  27. Keller AB, Reed SC, Townsend AR, Cleveland CC. 2013. Effects of canopy tree species on belowground biogeochemistry in a lowland wet tropical forest. Soil Biol Biochem 58:61–9.CrossRefGoogle Scholar
  28. Kirschbaum MUF, Paul KI. 2002. Modelling C and N dynamics in forest soils with a modified version of the CENTURY model. Soil Biol Biochem 34:341–54.CrossRefGoogle Scholar
  29. Kosugi Y, Mitani T, Ltoh M, Noguchi S, Tani M, Matsuo N, Takanashi S, Ohkubo S, Nik AR. 2007. Spatial and temporal variation in soil respiration in a Southeast Asian tropical rainforest. Agric For Meteorol 147:35–47.CrossRefGoogle Scholar
  30. Lenhart T, Eckhardt K, Fohrer N, Frede HG. 2002. Comparison of two different approaches of sensitivity analysis. Phys Chem Earth 27:645–54.CrossRefGoogle Scholar
  31. Lin C, Yang Y, Guo J, Chen G, Xie J. 2010. Fine root decomposition of evergreen broadleaved and coniferous tree species in mid-subtropical China: dynamics of dry mass, nutrient and organic fractions. Plant Soil 338:311–27.CrossRefGoogle Scholar
  32. Linn DM, Doran JW. 1984. Effect of water-filled pore-space on carbon-dioxide and nitrous-oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1267–72.CrossRefGoogle Scholar
  33. Liu L, King JS, Booker FL, Giardina CP, Allen HL, Hu S. 2009. Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO2: a microcosm study. Glob Change Biol 15:441–53.CrossRefGoogle Scholar
  34. Malhi Y, Baldocchi DD, Jarvis PG. 1999. The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–40.CrossRefGoogle Scholar
  35. Meentemeyer V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology 1978:465–72.CrossRefGoogle Scholar
  36. Meir P. 1996. The exchange of carbon dioxide in tropical forest. Ph.D. Thesis, University of Edinburgh, Scotland.Google Scholar
  37. Melillo JM, Aber JD, Muratore JF. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–6.CrossRefGoogle Scholar
  38. Motavalli PP, Palm CA, Parton WJ, Elliott ET, Frey SD. 1994. Comparison of laboratory and modelling simulation methods for estimating soil carbon pools in tropical forest soils. Soil Biol Biochem 26:935–44.CrossRefGoogle Scholar
  39. Ohashi M, Gyokusen K. 2007. Temporal change in spatial variability of soil respiration on a slope of Japanese cedar (Cryptomeria japonica D. Don) forest. Soil Biol Biochem 39:1130–8.CrossRefGoogle Scholar
  40. Parton WJ, Schimel DS, Cole CV, Ojima DS. 1987. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci Soc Am J 51:1173–9.CrossRefGoogle Scholar
  41. Potvin C, Mancilla L, Buchmann N, Monteza J, Moore T, Murphy M, Oelmann Y, Scherer-Lorenzen M, Turner BL, Wilcke W, Zeugin F, Wolf S. 2011. An ecosystem approach to biodiversity effects: carbon pools in a tropical tree plantation. For Ecol Manag 261:1614–24.CrossRefGoogle Scholar
  42. Powers JS, Schlesinger WH. 2002. Geographic and vertical patterns of stable carbon isotopes in tropical rain forest soils of Costa Rica. Geoderma 109:141–60.CrossRefGoogle Scholar
  43. Prescott CE, Zabek LM, Staley CL, Kabzems R. 2000. Decomposition of broadleaf and needle litter in forests of British Columbia: Influences of litter type, forest type and litter mixtures. Can J For Res 30:1742–50.CrossRefGoogle Scholar
  44. Russell AE, Raich JW, Valverde-Barrantes OJ, Fisher RF. 2007. Tree species effects o soil properties in experimental plantations in tropical moist forest. Soil Sci Soc Am J 71:1389–97.CrossRefGoogle Scholar
  45. Sayer EJ. 2006. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev 81:1–31.CrossRefPubMedGoogle Scholar
  46. Sayer EJ, Tanner EVJ. 2010. A new approach to trenching experiments for measuring root–rhizosphere respiration in a lowland tropical forest. Soil Biol Biochem 42:347–52.CrossRefGoogle Scholar
  47. Sayer EJ, Heard MS, Grant HK, Marthews TR, Tanner EVJ. 2011. Soil carbon release enhanced by increased tropical forest litterfall. Nat Clim Change 1:304–5.CrossRefGoogle Scholar
  48. Silver WL, Neff J, McGroddy ME, Veldkamp E, Keller M, Cosme R. 2000. Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems 3:193–209.CrossRefGoogle Scholar
  49. Smith P, Smith JU, Powlson D, McGill WB, Arah JRM, Chertov OG, Coleman K, Franko U, Frolking S, Jenkinson DS, Jensen LS, Kelly RH, Klein-Gunnewiek H, Komarov AS, Li C, Molina JAE, Mueller T, Parton WJ, Thornley JHM, Whitmore AP. 1997. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81:153–225.CrossRefGoogle Scholar
  50. Smith JO, Smith P, Wattenbach M, Zaehle S, Hiederer R, Jones RJA, Montanarella L, Rounsevell MDA, Reginster I, Ewert F. 2005. Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Glob Change Biol 11:2141–52.CrossRefGoogle Scholar
  51. Sotta ED, Meir P, Malhi Y, Nobre AD, Hodnett M, Grace J. 2004. Soil CO2 efflux in a tropical forest in the central Amazon. Glob Change Biol 10:601–17.CrossRefGoogle Scholar
  52. Stoyan H, De-Polli H, Böhm S, Robertson GP, Paul EA. 2000. Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant Soil 222:203–14.CrossRefGoogle Scholar
  53. Subke JA, Inglima I, Cotrufo FM. 2006. Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Glob Change Biol 12:1–23.CrossRefGoogle Scholar
  54. Swift MJ. 1979. Decomposition in terrestrial ecosystems. In: Swift MJ, Heal OW, Anderson JM, Eds. Oxford: Blackwell.Google Scholar
  55. Torn MS, Swanston CW, Castanha C, Trumbore SE. 2009. Storage and turnover of organic matter in soil. In: Senesi N, Xing B, Huang PM, Eds. Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Hoboken (NY): Wiley. p 219–72.CrossRefGoogle Scholar
  56. Trumbore SE, Davidson EA, Barbosa de Camargo P, Nepstad DC, Martinelli LA. 1995. Belowground cycling of carbon in forests and pastures of eastern Amazonia. Glob Biogeochem Cycles 9:515–28.CrossRefGoogle Scholar
  57. Trumbore SE. 1997. Potential responses of soil organic carbon to global environmental change. Proc Natl Acad Sci USA 94:8284–91.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Uchida M, Nakatsubo T, Horikoshi T, Nakane K. 1998. Contribution of micro-organisms to the carbon dynamics in black spruce (Picea mariana) forest soil in Canada. Ecol Res 13:17–26.CrossRefGoogle Scholar
  59. Valverde-Barrantes OJ. 2007. Relationships among litterfall, fine-root growth, and soil respiration for five tropical tree species. Can J For Res 37:1954–65.CrossRefGoogle Scholar
  60. Vance ED, Brookes PC, Jenkinson DS. 1987. Microbial biomass measurements in forest soils: the use of the chloroform fumigation–incubation method in strongly acid soils. Soil Biol Biochem 19:697–702.CrossRefGoogle Scholar
  61. Van Soest PJ. 1963. Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J Assoc Off Anal Chem 46:828–35.Google Scholar
  62. Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H. 1996. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187:159–219.CrossRefGoogle Scholar
  63. Waelbroeck C. 1995. Modélisation des échanges de CO2 entre la biosphère et l’atmosphère dans la Toundra. Thèse de doctorat, Université Libre de Bruxelles, Bruxelles.Google Scholar
  64. Wang HQ, Cornell JD, Hall CAS, Marley DP. 2002. Spatial and seasonal dynamics of surface soil carbon in the Luquillo Experimental Forest, Puerto Rico. Ecol Model 147:105–22.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Laëtitia Bréchet
    • 1
    • 2
  • Valérie Le Dantec
    • 3
  • Stéphane Ponton
    • 4
    • 5
  • Jean-Yves Goret
    • 2
  • Emma Sayer
    • 6
    • 7
    • 8
  • Damien Bonal
    • 4
    • 5
  • Vincent Freycon
    • 9
  • Jacques Roy
    • 10
    • 11
  • Daniel Epron
    • 4
    • 5
  1. 1.Department of Lancaster Environment CentreLancaster UniversityLancasterUK
  2. 2.INRA, UMR 0745Ecologie des Forêts de Guyane, Campus AgronomiqueKourou cedexFrench Guiana
  3. 3.Toulouse III, Université Paul Sabatier, UMR 5126Centre d’Etudes Spatiales de la BiosphèreToulouseFrance
  4. 4.INRA, UMR 1137, Ecologie et Ecophysiologie ForestièresCentre de NancyChampenouxFrance
  5. 5.UMR 1137, Ecologie et Ecophysiologie Forestières, Faculté des SciencesUniversité de LorraineVandoeuvre-les-NancyFrance
  6. 6.Lancaster Environment CentreLancaster UniversityLancasterUK
  7. 7.Smithsonian Tropical Research InstituteBalboa, Ancon, PanamaRepublic of Panama
  8. 8.Department of Environment, Earth and EcosystemsThe Open UniversityMilton KeynesUK
  9. 9.CIRAD, UPR Forêts et sociétésCampus International de BaillarguetMontpellier Cedex 5France
  10. 10.CNRS, UMR 5175Centre d’Ecologie Fonctionnelle et EvolutiveMontpellier Cedex 5France
  11. 11.CNRS, UPS 3248Ecotron Européen de MontpellierMontferrier-sur-LezFrance

Personalised recommendations