Advertisement

Ecosystems

, Volume 20, Issue 4, pp 757–768 | Cite as

Temporal and Spatial Patterns in Inputs and Stock of Organic Matter in Savannah Streams of Central Brazil

  • Paulino Bambi
  • Renan de Souza Rezende
  • Maria João Feio
  • Gustavo Figueiredo Marques Leite
  • Elisa Alvin
  • José Maurício Brandão Quintão
  • Fernanda Araújo
  • José Francisco Gonçalves Júnior
Article

Abstract

Coarse particulate organic matter (CPOM) inputs from riparian vegetation into streams and CPOM benthic stock vary naturally in space and time, but most studies in the tropical savannah (Cerrado) have been done over a small temporal scale (<1 year), which does not allow for the determination of inter-annual patterns. We found that CPOM collected over two years differed temporally and spatially, whereas there was no significant variation between years for the benthic stock, which indicates high stability in the energy balance of streams. The largest monthly inputs occurred between August and October, at the end of the dry season and the onset of the rainy season, which was partially explained by precipitation. Other factors such as photoperiod, which was not studied, could also have important roles in this pattern. Spatial differences in CPOM between streams were attributed to topography and channel morphology. The plant density was lowest in the stream with a more irregular topography and a deeper channel, which results in drier riparian soil. The benthic stock was highest in the stream with a flat channel, where the lower water speed facilitates the accumulation of CPOM in the stream bed. Inter-annual differences in CPOM were attributed more to the differences in the beginning of the dry and wet periods between years than to the average values of precipitation. Longer-term studies are needed to clarify this temporal pattern.

Keywords

tropical freshwater riparian zone headwaters CPOM Cerrado 

Notes

Acknowledgements

We are grateful to PROCAD-NF/CAPES (No. 173/2010), CAPES/Edital PNADB/2009 (No. 1098/2010), MCTI/CNPq No. 14/2013—Universal/Universal 14/2013 (No. 471767/2013-1), CNPq/Bolsas PQ (No. 302957/2014-6) MCTI/PELD/CNPq (No. 558233/2009-0), MCTI/CNPq/CT-AGRO/CT-SAÚDE/CT-HIDRO (No. 37/2013), MCT/CNPq/FNDCT/FAPs/MEC/CAPES/PRO-CENTRO-OESTE (No. 031/2010), EMBRAPA/Edital Chamada 01/2011, FAP-DF/Edital 03/2015 (No. 193.000.870/2015), FAPEMIG (No. APQ-00274-12), financial support in the form of funding (DPP; No. 121366/2011) and a PhD scholarship provided by the Post-Graduate Program in Ecology from the University of Brasília, the strategic project UID/MAR/04292/2013 granted to MARE, CAPES for the grant provided through the programme Ciência Sem Fronteiras/Atração de Jovens Talento, and to the Program of Ecology and Conservation from the State University of Mato Grosso in Nova Xavantina-MT (CAPES/PNPD) for offering a post-doctoral scholarship to Dr. Renan Rezende. Finally, we would like to express our special gratitude to the entire group of Aquariparia for their massive support throughout this study.

Supplementary material

10021_2016_58_MOESM1_ESM.pdf (539 kb)
Supplementary material 1 (PDF 540 kb)

References

  1. Abelho M. 2001. From litterfall to breakdown in streams: a review. Sci World 1:656–80.CrossRefGoogle Scholar
  2. Afonso AOHR, Andre RCSM. 2000. Allochthonous matter input in two different stretches of a headstream (Itatinga, São Paulo, Brazil), Brazilian. Arch Biol Technol 43:335–43.CrossRefGoogle Scholar
  3. Boyero L, Ramírez A, Dudgeon D, Pearson RG, Rami A. 2009. Are tropical streams really different? Am Benthol Soc 28:397–403.CrossRefGoogle Scholar
  4. Brito EF, Moulton TP, Souza MLDE, Bunn SE. 2006. Stable isotope analysis indicates microalgae as the predominant food source of fauna in a coastal forest stream, south-east Brazil. Aust Ecol 31:623–33.CrossRefGoogle Scholar
  5. Bunn SE, Davies PM, Mosisch TD. 1999. Ecosystem measures of river health and their response to riparian and catchment degradation. Freshw Biol 41:333–45.CrossRefGoogle Scholar
  6. Burrows RM, Magierowski RH, Fellman JB, Clapcott JE, Munks SA, Roberts S, Davies PE, Barmuta LA. 2014. Variation in stream organic matter processing among years and benthic habitats in response to forest clearfelling. For Ecol Manag 327:136–47.CrossRefGoogle Scholar
  7. Carvalho EM, Uieda VS. 2010. Input of litter in deforested and forested areas of a tropical headstream. Braz J Biol 70:283–8.CrossRefPubMedGoogle Scholar
  8. Celentano D, Zahawi RA, Finegan B, Ostertag R, Cole RJ, Holl KD. 2011. Litterfall dynamics under different tropical forest restoration strategies in Costa Rica. Biotropica 43:279–87.CrossRefGoogle Scholar
  9. Chapin III FS, Matson PA, Vitousek PM. 2011. Principles of terrestrial ecosystem ecology. (Springer, Ed.) Zhurnal Eksperimental’noii Teoretichesko iFiziki (second), New York: Springer.Google Scholar
  10. Colón-Gaud C, Peterson S, Whiles MR, Kilham SS, Lips KR, Pringle CM. 2008. Allochthonous litter inputs, organic matter standing stocks, and organic seston dynamics in upland Panamanian streams: potential effects of larval amphibians on organic matter dynamics. Hydrobiologia 603:301–12.CrossRefGoogle Scholar
  11. Crawley MJ. 2007. The R book. England: Wiley.CrossRefGoogle Scholar
  12. Cressa C, Weibezahn FH. 1976. Material vegetal aloctona de origen ribereño como alimento portencial para invertebrados benticos en un rio tropical. Acta Biol Ven 9:135–64.Google Scholar
  13. da Silva AM, Assad ED, Evangelista BA. 2008. Caracterização Climática do Bioma Cerrado in: Sano et al 2008: Cerrado Ecologoa e Flora, Embrapa Cerrado-Basília, pp 153–212.Google Scholar
  14. Descheemaeker K, Muys B, Nyssen J, Poesen J, Raes D, Haile M, Eckers J. 2006. Litter production and organic matter accumulation in exclosures of the Tigray highlands. Ethiopia 233:21–35.Google Scholar
  15. Elosegi A, Díez J, Pozo J, Wiley J. 2007. Contribution of dead wood to the carbon flux in forested streams. InterScience 1228:1219–28.Google Scholar
  16. Elosegi A, Pozo J. 2005. Litter input. In: Methods to study litter decomposition a practical guide. New York: Springer.Google Scholar
  17. Ensign SH, Doyle MW. 2006. Nutrient spiraling in streams and river networks. J Geophys Res 111:1–13.CrossRefGoogle Scholar
  18. Felfili JM, Silva Junior MC. 2005. Diversidade alfa e beta no cerrado sensu strictu, Distrito Federal, Goiás, Minas Gerais e Bahia. In: Scariot A, Sousa-Silva JC, Felfili JM, Cerrado: Ecologia, biodiversidade e conservação. Ministério do Meio Ambiente, Brasília, pp 141–154.Google Scholar
  19. Fischer RA, Fischenich JC. 2000. Design recommendations for riparian corridors and vegetated buffer strips. Development 1–17.Google Scholar
  20. Flombaum P, Sala OE. 2008. Higher effect of plant species diversity on productivity in natural than artificial ecosystems. Proc Natl Acad Sci USA 105:6087–90.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fonseca BM, Mendonça-Galvão C, Abreu LMM, Fernandes AC. 2014. Nutrient baselines of Cerrado low-order streams: comparing natural and impacted sites in Central Brazil. Environ Monit Assess 186:19–33.CrossRefPubMedGoogle Scholar
  22. França JS, Gregório RS, De D’Arc Paula J, Gonçalves Júnior JF, Ferreira FA, Callisto M. 2009. Composition and dynamics of allochthonous organic matter inputs and benthic stock in a Brazilian stream. Mar Freshw Res 60:990–8.CrossRefGoogle Scholar
  23. Gonçalves Júnior JF, Rezende S, Gregório RS, Valentin GC. 2014. Relationship between dynamics of litterfall and riparian plant species in a tropical stream. Limnologica 44:40–8.CrossRefGoogle Scholar
  24. Gonçalves Júnior JF, Callisto M. 2013. Organic-matter dynamics in the riparian zone of a tropical headwater stream in Southern Brasil. Aquat Bot 109:8–13.CrossRefGoogle Scholar
  25. Gonçalves Júnior JF, França JS, Callisto M. 2006. Dynamics of allochthonous organic matter in a tropical Brazilian headstream. Braz Arch Biol Technol 49:967–73.CrossRefGoogle Scholar
  26. Gücker B, Boëchat IG, Giani A. 2009. Impacts of agricultural land use on ecosystem structure and whole-stream metabolism of tropical Cerrado streams. Freshw Biol 54:2069–85.CrossRefGoogle Scholar
  27. Haase R. 1999. Litterfall and nutrient return in seasonally flooded and non-flooded forest of the Pantanal, Mato Grosso, Brazil. For Ecol Manag 117:129–47.CrossRefGoogle Scholar
  28. Hagen EM, McTammany ME, Webster JR, Benfield EF. 2010. Shifts in allochthonous input and autochthonous production in streams along an agricultural land-use gradient. Hydrobiologia 655:61–77.CrossRefGoogle Scholar
  29. Hart SK, Hibbs DE, Perakis SS. 2013. Riparian litter inputs to streams in the central Oregon Coast Range. Freshw Sci 32:343–58.CrossRefGoogle Scholar
  30. Heartsill Scalley T, Scatena FN, Moya S, Lugo AE. 2012. Long-term dynamics of organic matter and elements exported as coarse particulates from two Caribbean montane watersheds. J Trop Ecol 28:127–39.CrossRefGoogle Scholar
  31. Jones JB. 1997. Benthic organic matter storage in streams: influence of detrital import and export, retention mechanisms and climate. J N Am Bethol Soc 16:109–18.CrossRefGoogle Scholar
  32. Kiffney PM, Richardson JS. 2010. Organic matter inputs into headwater streams of southwestern British Columbia as a function of riparian reserves and time since harvesting. For Ecol Manag 260:1931–42.CrossRefGoogle Scholar
  33. Kochi K, Mishima Y, Nagasaka A. 2010. Lateral input of particulate organic matter from bank slopes surpasses direct litter fall in the uppermost reaches of a headwater stream in Hokkaido, Japan. Limnology 11:77–84.CrossRefGoogle Scholar
  34. Lisboa LK, da Silva ALL, Siegloch AE, Gonçalves JFJ, Petrucio MM. 2015. Temporal dynamics of allochthonous coarse particulate organic matter in a subtropical Atlantic rainforest Brazilian stream. Mar Freshw Res 66:1–7.CrossRefGoogle Scholar
  35. Marques MCM, Oliveira PEAM. 2004. Fenologia de espécies do dossel e do sub-bosque de duas Florestas de Restinga na Ilha do Mel, sul do Brasil. Rev Bras Bot 27:713–23.CrossRefGoogle Scholar
  36. Marques MCM, Roper JJ, Baggio Salvalaggio AP. 2004. Phenological patterns among plant life-forms in a subtropical forest in southern Brazil. Plant Ecol 173:203–13.CrossRefGoogle Scholar
  37. Moraes RG, Delliti WMC, Yara STV. 1999. Litterfall and litter nutrient content in two Brazilian Tropical Forests REGINA. Rev Bras Bot 22:1–17.CrossRefGoogle Scholar
  38. Naiman RJ, Bilby RE, Bisson PA. 2000. Riparian ecology and management in the pacific coastal rain forest. BioScience 50:111–999.CrossRefGoogle Scholar
  39. Naiman RJ, Décamps H, McClain ME. 2005. Riparia ecology, conservation, and management of streamside communities. Burlington: Elsevier Academic Press.Google Scholar
  40. Nóbrega MGG, Ramos AE, Silva-Júnior MC. 2001. Composição florística e estrutura na Mata de galeria do Cabeça-de-Veado no Jardim Botânico de Brasília, DF. Boletim do Herbário Ezechias Paulo Heringer 8:44–65.Google Scholar
  41. Nunes FP, Pinto MT. 2007. Produção de serapilheira em mata ciliar nativa e reflorestada no alto São Francisco, Minas Gerais. Biota Neotrop 7:97–102.CrossRefGoogle Scholar
  42. O’Driscoll JF, Harrison SC, Giller PS. 2006. Do trees make a difference? An evaluation of the impact of riparian vegetation on the ecology of nutrient poor headwater streams. J Ecol 54:695–700.Google Scholar
  43. Odum EP, Barrett GW. 2005. Fundamentals of ecology. Belmont: Thomson Brooks/Cole.Google Scholar
  44. Oliveira MC. 2010. Vinte e quatro anos de sucessão vegetal na mata de galeria do córrego Capetinga, na fazenda água limpa, Brasília. 174f (Tese de doutorado em ciências florestais). Brasília: Universidade de Brasília.Google Scholar
  45. Poathsin P, Compton SG, Wangpakapattanawong P. 2016. Seasonality of leaf and fig production in Ficus squamosa, a fig tree with seeds dispersed by water. Plos ONE 11:1–22.Google Scholar
  46. Pozo J, Elosegi A, Díez J, Molinero J. 2009. Dinàmica y relevancia de la materia organia. In: Elosegi and Sabater. Conceptos y técnicas en ecología fluvial. 1a ed. (BBVA F, editor), País Vasco.Google Scholar
  47. Reatto A, Martins ES. 2005. Classes de solo em relação aos controles da paisagem no bioma Cerrado. In: A. Scariot, J. C. Sousa-Silva, J. M. Felfili (Orgs.) Recife: Ecologia, Biodiversidade e Conservação, Ministério do Meio Ambiente (in Portuguese), pp 49–59.Google Scholar
  48. Rezende RS, Graça MAS, Santos AM, Medeiros AO, Santos PF, Nunes YRF, Gonçalves Júnior JF. 2016. Organic matter dynamics in a tropical gallery forest in a grassland landscape. Biotropica 48:301–10.CrossRefGoogle Scholar
  49. Rezende RS, Santos AM, Henke-Oliveira C, Gonçalves JF Jr. 2014. Effects of spatial and environmental factors on benthic a macroinvertebrate community. Soc Bras Zool 31:1–5.Google Scholar
  50. Ribeiro JF, Fonseca CL, Sousa-Silva JC. 2001. CERRADO: Caracterização e recuperação de matas de galeria. (E. Cerrados, Ed.1ª edition). Planaltina.Google Scholar
  51. Ribeiro JF, Walter BMT. 2008. As princpais Fitifisionomia do Bioma Cerrado. in: SANO et al Cerrado Ecologoa e Flora, Embrapa Cerrado-Basília, pp 153–212.Google Scholar
  52. Rivera G, Borchert R. 2001. Induction of flowering in tropical trees by a 30-min reduction in photoperiod: evidence from field observations and herbarium specimens. Tree Physiol 21:201–12.CrossRefPubMedGoogle Scholar
  53. Sabater S, Elosegi A, Acuña V, Basaguren A, Muñoz I, Pozo J. 2008. Effect of climate on the trophic structure of temperate forested streams. A comparison of Mediterranean and Atlantic streams. Sci Total Environ 390:475–84.CrossRefPubMedGoogle Scholar
  54. Sanches L, Valentini CMA, Biudesm S. Nogueira JDS. 2008. Dinâmica sazonal da produção e decomposição de serapilheira em floresta tropical de transição. Revista Brasileira de Engenharia Agrícola e Ambiental 13:183–189.Google Scholar
  55. Silva Júnior MC. 2001. Comparação entre matas de galeria no Destrito Federal e a efetividade do Código Florestal na proteção de sua diversidade arbórea 15:139–146.Google Scholar
  56. Silva Júnior MC. 2004. Fitossociologia e estrutura diamétrica da mata de galeria. Rev Árvore 28:419–28.CrossRefGoogle Scholar
  57. Smith TA, Osmond DL, Moorman CE, Stucky JM, Gilliam JW. 2008. Effect of vegetation management on bird habitat in riparian buffer zones. South-east Nat 7:277–88.CrossRefGoogle Scholar
  58. Souza JS, Espirito-Santo FDB, Fontes MAL, Oliveira-Filho ATB. 2003 Análise das variações florística e estruturais da comunidade arbórea de um fragmento de floresta semidecídua às margens do rio Capivari 01:185–206.Google Scholar
  59. Steiger J, Gurnell AM. 2002. Spatial hydrogeomorphological influences on sediment and nutrient deposition in riparian zones: observations from the Garonne River. Geomorphology 49:1–23.CrossRefGoogle Scholar
  60. Strahler AN. 1952. Hypsometric (area altitude) analysis of erosional topology. Geol Soc Am Bull 63:1117–42.CrossRefGoogle Scholar
  61. Tank JL, Rosi-Marshall EJ, Griffiths NA, Entrekin SA, Stephen ML. 2010. A review of allochthonous organic matter dynamics and metabolism in streams. J N Am Benthol Soc 29:118–46.CrossRefGoogle Scholar
  62. Twilley RR, Pozo M, García VH, Rivera-Monroy VH, Zambrano R, Bodero A. 1997. Litter dynamics in riverine mangrove forests in the Gyayanas river estuary, Ecuador. Oecologia 111:109–22.CrossRefPubMedGoogle Scholar
  63. Varejão-Silva MA. 2006. Meteorologia e Climatologia. Versão digital 2ª ed. Recife. p 449.Google Scholar
  64. Vendrame PRS, Brito OR, Guimarães MF, Martins ES, Becquer T. 2010. Fertility and acidity status of latossolos (oxisols) under pasture in the Brazilian Cerrado. An Acad Bras Ciênc 82:1085–94.CrossRefPubMedGoogle Scholar
  65. Veneklaas EJ. 1991. Litterfall and nutrient fluxes in two montane tropical rain forests, Colombia. J Trop Ecol 7:319–36.CrossRefGoogle Scholar
  66. Von Schiller Martí E, Riera JL, Argerich MRA, Fonollà P, Sabater F. 2008. Inter-annual, annual, and seasonal variation of P and N retention in a perennial and an intermittent stream. Ecosystems 11:670–87.CrossRefGoogle Scholar
  67. Wantzen KM, Yule CM, Mattooko JM, Pringle CM. 2008. Organic matter processing in tropical streams. In: Dudgeon D, Ed. Tropical stream ecology. Amsterdam: Elsevier. p 43–64.CrossRefGoogle Scholar
  68. Wieder KR, Wright SJ. 2001. Tropical forest litter dinamic and dry irrigation on Barro Colorado Island, Panama. Ecology 76:1971–9.CrossRefGoogle Scholar
  69. Wright SJ, Cornejo FH. 1990. Seasonal drought and leaf fall in a tropical forest. Ecology 71:1165–75.CrossRefGoogle Scholar
  70. Zhang H, Yuan W, Dong W, Liu S. 2014. Seasonal patterns of litterfall in forest ecosystem worldwide. Ecol Complex 20:240–7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Paulino Bambi
    • 1
  • Renan de Souza Rezende
    • 2
  • Maria João Feio
    • 3
  • Gustavo Figueiredo Marques Leite
    • 1
  • Elisa Alvin
    • 1
  • José Maurício Brandão Quintão
    • 1
  • Fernanda Araújo
    • 1
  • José Francisco Gonçalves Júnior
    • 1
  1. 1.Departamento de Ecologia, Instituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Universidade Estadual do Mato Grosso Campus Nova XavantinaNova XavantinaBrazil
  3. 3.Department of Life Sciences, MARE-Marine and Environmental Research CentreUniversity of CoimbraCoimbraPortugal

Personalised recommendations