Advertisement

Ecosystems

, Volume 20, Issue 4, pp 781–795 | Cite as

Modeling Allochthonous Dissolved Organic Carbon Mineralization Under Variable Hydrologic Regimes in Boreal Lakes

  • Dominic Vachon
  • Yves T. Prairie
  • François Guillemette
  • Paul A. del Giorgio
Article

Abstract

Here, we explore the interaction between hydrology and the reactivity of allochthonous dissolved organic carbon (DOCalloch) in determining the potential of DOCalloch to generate CO2 through biological and photo-chemical mineralization in boreal lakes. We developed a mechanistic model that integrates the reactivity continuum (RC) concept to reconstruct in-lake mineralization of DOCalloch under variable hydrologic conditions using empirical measurements of DOCalloch concentrations and reactivity as model inputs. The model predicts lake DOCalloch concentration (L-DOCalloch) and its average overall reactivity \( \left( {\bar{K}_{\text{alloch}} } \right) \), which integrates the distribution of DOCalloch ages within the lake as a function of the DOC loading (DOCin), the initial reactivity of this DOCin (k 0), and the lake water residence time (WRT). The modeled DOCalloch mineralization rates and concentrations were in agreement with expectations based on observed and published values of ambient lake DOC concentrations and reactivity. Results from this modeling exercise reveal that the interaction between WRT and k 0 is a key determinant of the ambient concentration and reactivity of lake DOCalloch, which represents the bulk of DOC in most of these lakes. The steady-state \( \left( {\bar{K}_{\text{alloch}} } \right) \) also represents the proportion of CO2 that can be extracted from DOCalloch during its transit through lakes, and partly explains the patterns in surface water pCO2 oversaturation that have been observed across gradients of lake size and volume. We estimate that in-lake DOCalloch mineralization could potentially contribute on average 30–40% of the observed surface carbon dioxide partial pressure (pCO2) across northern lakes. Applying the RC framework to in-lake DOCalloch dynamics improves our understanding of DOCalloch transformation and fate along the aquatic network, and results in a predictable mosaic of DOC reactivity and potential CO2 emissions across lakes within a landscape.

Keywords

boreal lakes allochthonous DOC water residence time DOC reactivity CO2 production reactivity continuum 

Notes

Acknowledgements

We would like to thank Annick St-Pierre, Alice Parkes, Audrey Campeau, Mathieu Dumais, and Jean-Philippe Desindes for field and laboratory assistance and Adam Heathcote for the WRT calculations. We also thank Christopher Solomon and Jean-François Lapierre for helpful advice and discussions as well as HSC for continuous unwavering guidance. This project was part of the large-scale research program of the Industrial Research Chair in Carbon Biogeochemistry in Boreal Aquatic Systems (CarBBAS), co-funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and Hydro-Québec to PDG. NSERC doctoral scholarship and UQAM-FARE scholarship was also attributed to DV.

Supplementary material

10021_2016_57_MOESM1_ESM.docx (184 kb)
Supplementary material 1 (DOCX 183 kb)

References

  1. Ågren A, Berggren M, Laudon H, Jansson M. 2008. Terrestrial export of highly bioavailable carbon from small boreal catchments in spring floods. Freshw Biol 53:964–72.CrossRefGoogle Scholar
  2. Algesten G, Sobek S, Bergström A-K, Ågren A, Tranvik LJ, Jansson M. (2004). Role of lakes for organic carbon cycling in the boreal zone. Global Change Biol 10:141–7. doi: 10.1111/j.1365-2486.2003.00721.x.CrossRefGoogle Scholar
  3. Berggren M, Ziegler SE, Gelais ST, Beisner BE, del Giorgio PA. 2014. Contrasting patterns of allochthony among three major groups of crustacean zooplankton in boreal and temperate lakes. Ecology 95:1947–59.CrossRefPubMedGoogle Scholar
  4. Biddanda BA, Cotner JB. 2002. Love handles in aquatic ecosystems: The role of dissolved organic carbon drawdown, resuspended sediments, and terrigenous inputs in the carbon balance of Lake Michigan. Ecosystems 5:431–45.CrossRefGoogle Scholar
  5. Bolin B, Rodhe H. 1973. A note on the concepts of age distribution and transit time in natural reservoirs. Tellus 25(1):58–62.CrossRefGoogle Scholar
  6. Boudreau B, Ruddick B. 1991. On a reactive continuum representation of organic matter diagenesis. Am J Sci 291:507–38.CrossRefGoogle Scholar
  7. Boudreau BP, Arnosti C, Jørgensen BB, Canfield DE. 2008. Comment on “Physical model for the decay and preservation of marine organic carbon”. Science (New York, NY) 319:1616; author reply 1616.Google Scholar
  8. Campeau A, Lapierre J-F, Vachon D, del Giorgio PA. 2014. Regional contribution of CO2 and CH4 fluxes from the fluvial network in a lowland boreal landscape of Québec. Global Biogeochem Cycles. doi: 10.1002/2013GB004685.Google Scholar
  9. Catalán AN, Marcé R, Kothawala DN, Tranvik LJ. 2016. Organic carbon decomposition rates controlled by water retention time across inland waters. Nat Geosci. doi: 10.1038/ngeo2720.Google Scholar
  10. Cole JJ, Carpenter SR, Kitchell JF, Pace ML. 2002. Pathways of organic carbon utilization in small lakes: results from a whole-lake 13C addition and coupled model. Limnol Oceanogr 47:1664–75.CrossRefGoogle Scholar
  11. Cole JJ, Pace ML, Carpenter SR, Kitchell JF. 2000. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnol Oceanogr 45:1718–30.CrossRefGoogle Scholar
  12. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–85.CrossRefGoogle Scholar
  13. Cole JJ, Prairie YT. 2009. Dissolved CO2. In: Likens GE, Ed. Dissolved CO2, Vol. 2. Oxford: Elsevier. p 30–4.Google Scholar
  14. Dillon P, Molot L. 1997. Dissolved organic and inorganic carbon mass balances in central Ontario lakes. Biogeochemistry 36(1):29–42.CrossRefGoogle Scholar
  15. Fekete BM, Voeroesmarty J, Grabs W. 1999. Global composite runoff fields based on observed river discharge and simulated water balances [online]. Complex Systems Research Center University of New Hampshire.Google Scholar
  16. Ferland M-E, del Giorgio PA, Teodoru CR, Prairie YT. 2012. Long-term C accumulation and total C stocks in boreal lakes in northern Québec. Global Biogeochem Cycles. doi: 10.1029/2011GB004241.Google Scholar
  17. Frenette J-J, Arts MT, Morin J, Gratton D, Martin C. 2006. Hydrodynamic control of the underwater light climate in fluvial Lac Saint-Pierre. Limnol Oceanogr 51:2632–45.CrossRefGoogle Scholar
  18. Guillemette F, McCallister SL, del Giorgio PA. 2013. Differentiating the degradation dynamics of algal and terrestrial carbon within complex natural dissolved organic carbon in temperate lakes. J Geophys Res 118:963–73. doi: 10.1002/jgrg.20077.CrossRefGoogle Scholar
  19. Hanson P, Buffam I, Rusak J, Stanley E, Watras C. 2014. Quantifying lake allochthonous organic carbon budgets using a simple equilibrium model. Limnol Oceanogr 59:167–81.CrossRefGoogle Scholar
  20. Hanson PC, Hamilton DP, Stanley EH, Preston N, Langman OC, Kara EL, Emily L. 2011. Fate of allochthonous dissolved organic carbon in lakes: a quantitative approach. PloS ONE 6:e21884.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Heathcote AJ, del Giorgio PA, Prairie YT. 2015. Predicting bathymetric features of lakes from the topography of their surrounding landscape. Can J Fish Aquat Sci 650:643–50.CrossRefGoogle Scholar
  22. Hernes PJ. 2003. Photochemical and microbial degradation of dissolved lignin phenols: implications for the fate of terrigenous dissolved organic matter in marine environments. J Geophys Res 108:3291.CrossRefGoogle Scholar
  23. Jansson M, Hickler T, Jonsson A, Karlsson J. 2008. Links between terrestrial primary production and bacterial production and respiration in lakes in a climate gradient in subarctic Sweden. Ecosystems 11:367–76.CrossRefGoogle Scholar
  24. Kalbitz K, Schmerwitz J, Schwesig D, Matzner E. 2003. Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113:273–91.CrossRefGoogle Scholar
  25. Karlsson J, Jansson M, Jonsson A. 2007. Respiration of allochthonous organic carbon in unproductive forest lakes determined by the Keeling plot method. Limnol Oceanogr 52:603–8.CrossRefGoogle Scholar
  26. Kellerman AM, Dittmar T, Kothawala DN, Tranvik LJ. 2014. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology. Nat Commun 5:3804.CrossRefPubMedGoogle Scholar
  27. Koehler B, Tranvik LJ. 2015. Reactivity continuum modeling of leaf, root and wood decomposition across biomes. J Geophys Res 120:1196–214. doi: 10.1002/2015JG002908.CrossRefGoogle Scholar
  28. Koehler B, von Wachenfeldt E, Kothawala D, Tranvik LJ. 2012. Reactivity continuum of dissolved organic carbon decomposition in lake water. J Geophys Res 117:G01024.CrossRefGoogle Scholar
  29. Kothawala DN, Stedmon CA, Müller RA, Weyhenmeyer GA, Köhler SJ, Tranvik LJ. 2014. Controls of dissolved organic matter quality: evidence from a large-scale boreal lake survey. Global Change Biol 20:1101–14.CrossRefGoogle Scholar
  30. Lapierre J-F, del Giorgio PA. 2012. Geographical and environmental drivers of regional differences in the lake pCO2 versus DOC relationship across northern landscapes. J Geophys Res 117:G03015.CrossRefGoogle Scholar
  31. Lapierre J-F, del Giorgio PA. 2014. Partial coupling and differential regulation of biologically and photochemically labile dissolved organic carbon across boreal aquatic networks. Biogeosciences 11:5969–85.CrossRefGoogle Scholar
  32. Lapierre J-F, Guillemette F, Berggren M, del Giorgio PA. 2013. Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems. Nat Commun. doi: 10.1038/ncomms3972.Google Scholar
  33. Laudon H, Berggren M, Ågren A, Buffam I, Bishop K, Grabs T, Jansson M, Köhler S. 2011. Patterns and dynamics of dissolved organic carbon (DOC) in boreal streams: the role of processes, connectivity, and scaling. Ecosystems 14:880–93.CrossRefGoogle Scholar
  34. Marin-Spiotta E, Gruley KE, Crawford J, Atkinson EE, Miesel JR, Greene S, Cardona-Correa C, Spencer RGM. 2014. Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. Biogeochemistry. doi: 10.1007/s10533-013-9949-7.Google Scholar
  35. Marschner B, Kalbitz K. 2003. Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 113:211–35.CrossRefGoogle Scholar
  36. McCallister SL, del Giorgio PA. 2008. Direct measurement of the d13C signature of carbon respired by bacteria in lakes: linkages to potential carbon sources, ecosystem baseline metabolism, and CO2 fluxes. Limnol Oceanogr 53:1204–16.CrossRefGoogle Scholar
  37. Molot LA, Dillon PJ. 1997. Photolytic regulation of dissolved organic carbon in northern lakes. Global Biogeochem Cycles 11:357–65.CrossRefGoogle Scholar
  38. Monsen NE, Cloern JE, Lucas LV, Monismith SG. 2002. The use of flushing time, residence time, and age as transport time scales. Limnol Oceanogr 47:1545–53.CrossRefGoogle Scholar
  39. Mostovaya A, Koehler B, Guillemette F, Brunberg A-K, Tranvik LJ. 2016. Effects of compositional changes on reactivity continuum and decomposition kinetics of lake dissolved organic matter. J Geophys Res. doi: 10.1002/2016JG003359.Google Scholar
  40. Opsahl S, Benner R. 1998. Photochemical reactivity of dissolved lignin in river and ocean waters. Limnol Oceanogr 43:1297–304.CrossRefGoogle Scholar
  41. Prairie Y. 2008. Carbocentric limnology: looking back, looking forward. Can J Fish Aquat Sci 548:543–8.CrossRefGoogle Scholar
  42. QGIS Development Team. 2014. QGIS Geographic Information System, version 2.0.1 [online]. Open Source Geospatial Foundation Project. Available from qgis.osgeo.org.
  43. R Development Core Team. 2008. R: A language and environment for statistical computing.Google Scholar
  44. Rasilo T, Prairie YT, del Giorgio PA. 2014. Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions. Global Change Biol 1:1–16.Google Scholar
  45. Raymond PA, Saiers JE, Sobczak WV. 2016. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept. Ecology 97:5–16.PubMedGoogle Scholar
  46. Read JS, Hamilton DP, Desai AR, Rose KC, MacIntyre S, Lenters JD, Smyth RL, Hanson PC, Cole JJ, Staehr PA, Rusak JA, Pierson DC, Brookes JD, Laas A, Wu CH. 2012. Lake-size dependency of wind shear and convection as controls on gas exchange. Geophys Res Lett. doi: 10.1029/2012GL051886.Google Scholar
  47. Rothman DH, Forney DC. 2007. Physical model for the decay and preservation of marine organic carbon. Science 316:1325–8.CrossRefPubMedGoogle Scholar
  48. Roulet N, Moore TR. 2006. Browning the waters. Nature 444:2–3.CrossRefGoogle Scholar
  49. Solomon CT, Jones SE, Weidel BC, Buffam I, Fork ML, Karlsson J, Larsen S, Lennon JT, Read JS, Sadro S, Saros JE. 2015. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems 18(3):376–89.CrossRefGoogle Scholar
  50. Stets EG, Striegl RG, Aiken GR. 2010. Dissolved organic carbon export and internal cycling in small, headwater lakes. Global Biogeochem Cycles 24:GB4008. doi: 10.1029/2010GB003815.CrossRefGoogle Scholar
  51. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie YT, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–314.CrossRefGoogle Scholar
  52. Vachon D, del Giorgio PA. 2014. Whole-lake CO2 dynamics in response to storm events in two morphologically different lakes. Ecosystems 17:1338–53.CrossRefGoogle Scholar
  53. Vachon D, Lapierre J-F, del Giorgio PA. 2016. Seasonality of photo-chemical dissolved organic carbon mineralization and its relative contribution to pelagic CO2 production in northern lakes. J Geophys Res Biogeosci. doi: 10.1002/2015JG003244.Google Scholar
  54. Vachon D, Prairie YT. 2013. The ecosystem size and shape dependence of gas transfer velocity versus wind speed relationships in lakes. Can J Fish Aquat Sci 70:1757–64.CrossRefGoogle Scholar
  55. Vähätalo AV, Aarnos H, Mäntyniemi S. 2010. Biodegradability continuum and biodegradation kinetics of natural organic matter described by the beta distribution. Biogeochemistry 100:227–40.CrossRefGoogle Scholar
  56. Venkiteswaran JJ, Wassenaar LI, Schiff SL. 2007. Dynamics of dissolved oxygen isotopic ratios: a transient model to quantify primary production, community respiration, and air-water exchange in aquatic ecosystems. Oecologia 153:385–98.CrossRefPubMedGoogle Scholar
  57. von Wachenfeldt E, Tranvik LJ. 2008. Sedimentation in Boreal Lakes—the role of flocculation of allochthonous dissolved organic matter in the water column. Ecosystems 11:803–14.CrossRefGoogle Scholar
  58. Wetzel RRG, Hatcher PPG, Bianchi TTS. 1995. Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol Oceanogr 40:1369–80.CrossRefGoogle Scholar
  59. Weyhenmeyer GA, Kosten S, Wallin MB, Tranvik LJ, Jeppesen E, Roland F. 2015. Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs. Nat Geosci 8:933–6.CrossRefGoogle Scholar
  60. Wickland KP, Neff JC, Aiken GR. 2007. Dissolved organic carbon in Alaskan Boreal forest: sources, chemical characteristics, and biodegradability. Ecosystems 10:1323–40.CrossRefGoogle Scholar
  61. Wilkinson GM, Buelo CD, Cole JJ, Pace ML. 2016. Exogenously produced CO2 doubles the CO2 efflux from three north temperate lakes. Geophys Res Lett. doi: 10.1002/2016GL067732.Google Scholar
  62. Wilkinson GM, Pace ML, Cole JJ. 2013. Terrestrial dominance of organic matter in north temperate lakes. Global Biogeochem Cycles 27(1):43–51. doi: 10.1029/2012GB004453.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Dominic Vachon
    • 1
    • 3
  • Yves T. Prairie
    • 1
  • François Guillemette
    • 2
  • Paul A. del Giorgio
    • 1
  1. 1.Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Département des Sciences BiologiqueUniversité du Québec à MontréalMontrealCanada
  2. 2.Department of Earth, Ocean and Atmospheric ScienceFlorida State UniversityTallahasseeUSA
  3. 3.Department F.-A. Forel for Environmental and Aquatic SciencesUniversity of GenevaGenevaSwitzerland

Personalised recommendations