Advertisement

Ecosystems

, Volume 20, Issue 3, pp 515–526 | Cite as

Warming Effects on Ecosystem Carbon Fluxes Are Modulated by Plant Functional Types

  • Ji Chen
  • Yiqi Luo
  • Jianyang Xia
  • Kevin R. Wilcox
  • Junji Cao
  • Xuhui Zhou
  • Lifen Jiang
  • Shuli Niu
  • Katerina Y. Estera
  • Rujin Huang
  • Feng Wu
  • Tafeng Hu
  • Junyi Liang
  • Zheng Shi
  • Jianfen Guo
  • Rui-Wu Wang
Article

Abstract

Despite the importance of future carbon (C) pools for policy and land management decisions under various climate change scenarios, predictions of these pools under altered climate vary considerably. Chronic warming will likely impact both ecosystem C fluxes and the abundance and distribution of plant functional types (PFTs) within systems, potentially interacting to create novel patterns of C exchange. Here, we report results from a 3-year warming experiment using open top chambers (OTC) on the Tibetan Plateau meadow grassland. Warming significantly increased C uptake through gross primary productivity (GPP) but not ecosystem respiration (ER), resulting in a 31.0% reduction in net ecosystem exchange (NEE) in warmed plots. The OTC-induced changes in ecosystem C fluxes were not fully explained by the corresponding changes in soil temperature and moisture. Warming treatments significantly increased the biomass of graminoids and legumes by 12.9 and 27.6%. These functional shifts were correlated with enhanced local GPP, but not ER, resulting in more negative NEE in plots with larger increases in graminoid and legume biomass. This may be due to a link between greater legume abundance and higher levels of total inorganic nitrogen, which can potentially drive higher GPP, but not higher ER. Overall, our results indicate that C-climate feedbacks might be closely mediated by climate-induced changes in PFTs. This highlights the need to consider the impacts of changes in PFTs when predicting future responses of C pools under altered climate scenarios.

Keywords

ecosystem carbon fluxes net ecosystem exchange climate change aboveground biomass plant functional types soil inorganic nitrogen experimental warming Tibetan plateau 

Notes

Acknowledgments

This study was supported by the Ministry of Science & Technology (2012BAH31B03), and the State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment of Chinese Academy of Sciences (SKLLQG1303). Contributions from Dr. Luo’s Eco-lab to this study was financially supported by US Department of Energy, Terrestrial Ecosystem Sciences Grant DE SC0008270 and US National Science Foundation (NSF) Grant DBI 0850290, EPS0919466, DEB 0743778, DEB 0840964, and EF 1137293. The authors gratefully acknowledge financial support from China Scholarship Council (award for a 1-year study abroad at the University of Oklahoma).

Supplementary material

10021_2016_35_MOESM1_ESM.docx (216 kb)
Supplementary material 1 (DOCX 216 kb)

References

  1. Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jónsdóttir IS, Laine K, Lévesque E, Marion GM, Molau U, Mølgaard P, Nordenhäll U, Raszhivin V, Robinson CH, Starr G, Stenström A, Stenström M, Totland Ø, Turner PL, Walker LJ, Webber PJ, Welker JM, Wookey PA. 1999. Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecol Monogr 69:491–511.Google Scholar
  2. Atkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, Bonal D, Bönisch G, Bradford MG, Cernusak LA, Cosio EG. 2015. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol 206:614–36.CrossRefPubMedGoogle Scholar
  3. Bai E, Li S, Xu W, Li W, Dai W, Jiang P. 2013. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol 199:441–51.CrossRefGoogle Scholar
  4. Ballantyne A, Alden C, Miller J, Tans P, White J. 2012. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488:70–2.CrossRefPubMedGoogle Scholar
  5. Brient F, Bony S. 2013. Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Clim Dyn 40:2415–31.CrossRefGoogle Scholar
  6. Čapek P, Diáková K, Dickopp J-E, Bárta J, Wild B, Schnecker J, Alves RJE, Aiglsdorfer S, Guggenberger G, Gentsch N. 2015. The effect of warming on the vulnerability of subducted organic carbon in arctic soils. Soil Biol Biochem 90:19–29.CrossRefGoogle Scholar
  7. Cardon ZG, Gage DJ. 2006. Resource exchange in the rhizosphere: molecular tools and the microbial perspective. Annu Rev Ecol Evol Syst 37:459–88.CrossRefGoogle Scholar
  8. Chen J, Luo Y, Li J, Zhou X, Cao J, Wang RW, Wang Y, Shelton S, Jin Z, Walker LM. 2016a. Costimulation of soil glycosidase activity and soil respiration by nitrogen addition. Glob Chang Biol. doi: 10.1111/gcb.13402.Google Scholar
  9. Chen J, Luo Y, Xia J, Jiang L, Zhou X, Lu M, Liang J, Shi Z, Shelton S, Cao J. 2015a. Stronger warming effects on microbial abundances in colder regions. Sci Rep. doi: 10.1038/srep18032.Google Scholar
  10. Chen J, Luo Y, Xia J, Shi Z, Jiang L, Niu S, Zhou X, Cao J. 2016b. Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau. Agric For Meteorol 220:21–9.CrossRefGoogle Scholar
  11. Chen J, Shi W, Cao J. 2015b. Effects of grazing on ecosystem CO2 exchange in a meadow grassland on the tibetan plateau during the growing season. Environ Manag 55:347–59.CrossRefGoogle Scholar
  12. Chen J, Zhou X, Wang J, Hruska T, Shi W, Cao J, Zhang B, Xu G, Chen Y, Luo Y. 2016c. Grazing exclusion reduced soil respiration but increased its temperature sensitivity in a Meadow Grassland on the Tibetan Plateau. Ecol Evol 6:675–87.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Creamer CA, de Menezes AB, Krull ES, Sanderman J, Newton-Walters R, Farrell M. 2015. Microbial community structure mediates response of soil C decomposition to litter addition and warming. Soil Biol Biochem 80:175–88.CrossRefGoogle Scholar
  14. Davidson E, Belk E, Boone RD. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Chang Biol 4:217–27.CrossRefGoogle Scholar
  15. Davidson EA, Janssens IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–73.CrossRefPubMedGoogle Scholar
  16. De Frenne P, De Schrijver A, Graae BJ, Gruwez R, Tack W, Vandelook F, Hermy M, Verheyen K. 2010. The use of open-top chambers in forests for evaluating warming effects on herbaceous understorey plants. Ecol Res 25:163–71.CrossRefGoogle Scholar
  17. Dieleman CM, Branfireun BA, McLaughlin JW, Lindo Z. 2015. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability. Glob Chang Biol 21:388–95.CrossRefPubMedGoogle Scholar
  18. Dorji T, Totland Ø, Moe SR, Hopping KA, Pan J, Klein JA. 2013. Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Glob Chang Biol 19:459–72.CrossRefPubMedGoogle Scholar
  19. Dorrepaal E, Toet S, van Logtestijn RS, Swart E, van de Weg MJ, Callaghan TV, Aerts R. 2009. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460:616–19.CrossRefGoogle Scholar
  20. Fang H, Cheng S, Yu G, Zheng J, Zhang P, Xu M, Li Y, Yang X. 2012. Responses of CO2 efflux from an alpine meadow soil on the Qinghai Tibetan Plateau to multi-form and low-level N addition. Plant Soil 351:177–90.CrossRefGoogle Scholar
  21. Field C, Dise N, Payne R, Britton A, Emmett B, Helliwell R, Hughes S, Jones L, Lees S, Leake J, Leith I, Phoenix G, Power S, Sheppard L, Southon G, Stevens C, Caporn SM. 2014. The role of nitrogen deposition in widespread plant community change across semi-natural habitats. Ecosystems 17:864–77.CrossRefGoogle Scholar
  22. Fornara D, Tilman D. 2008. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–22.CrossRefGoogle Scholar
  23. Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, Liddicoat SK, Knutti R. 2014. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J Clim 27:511–26.CrossRefGoogle Scholar
  24. Ganjurjav H, Gao Q, Gornish ES, Schwartz MW, Liang Y, Cao X, Zhang W, Zhang Y, Li W, Wan Y. 2016. Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau. Agric For Meteorol 223:233–40.CrossRefGoogle Scholar
  25. Ganjurjav H, Gao Q, Zhang W, Liang Y, Li Y, Cao X, Wan Y, Li Y, Danjiu L. 2015. Effects of warming on Co2 fluxes in an alpine Meadow ecosystem on the Central Qinghai-Tibetan Plateau. Plos One 10:e0132044.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Giardina CP, Litton CM, Crow SE, Asner GP. 2014. Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux. Nat Clim Chang 4:822–7.CrossRefGoogle Scholar
  27. Heimann M, Reichstein M. 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–92.CrossRefPubMedGoogle Scholar
  28. Hook P, Burke I. 1995. Evaluation of methods for estimating net nitrogen mineralization in a semiarid grassland. Soil Sci Soc Am J 59:831–7.CrossRefGoogle Scholar
  29. Hu R, X-p Wang, Y-x Pan, Y-f Zhang, Zhang H, Chen N. 2015. Seasonal variation of net N mineralization under different biological soil crusts in Tengger Desert, North China. Catena 127:9–16.CrossRefGoogle Scholar
  30. Jiang C, Yu G, Fang H, Cao G, Li Y. 2010. Short-term effect of increasing nitrogen deposition on CO 2, CH 4 and N 2 O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. Atmos Environ 44:2920–6.CrossRefGoogle Scholar
  31. Kardol P, Campany CE, Souza L, Norby RJ, Weltzin JF, Classen AT. 2010. Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem. Glob Chang Biol 16:2676–87.CrossRefGoogle Scholar
  32. Keenan TF, Gray J, Friedl MA, Toomey M, Bohrer G, Hollinger DY, Munger JW, O’Keefe J, Schmid HP, Wing IS. 2014. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat Clim Chang 4:598–604.CrossRefGoogle Scholar
  33. Klein JA, Harte J, Zhao X-Q. 2004. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett 7:1170–9.CrossRefGoogle Scholar
  34. Klein JA, Harte J, Zhao X-Q. 2007. Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. Ecol Appl 17:541–57.CrossRefPubMedGoogle Scholar
  35. Lee TD, Reich PB, Tjoelker MG. 2003. Legume presence increases photosynthesis and N concentrations of co-occurring non-fixers but does not modulate their responsiveness to carbon dioxide enrichment. Oecologia 137:22–31.CrossRefPubMedGoogle Scholar
  36. Lempereur M, Martin-StPaul NK, Damesin C, Joffre R, Ourcival JM, Rocheteau A, Rambal S. 2015. Growth duration is a better predictor of stem increment than carbon supply in a Mediterranean oak forest: implications for assessing forest productivity under climate change. New Phytol 207:579–90.CrossRefPubMedGoogle Scholar
  37. Lin D, Xia J, Wan S. 2010. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytol 188:187–98.CrossRefPubMedGoogle Scholar
  38. Liu X, Chen B. 2000. Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20:1729–42.CrossRefGoogle Scholar
  39. Lloyd J, Taylor J. 1994. On the temperature dependence of soil respiration. Funct Ecol 8:315–23.CrossRefGoogle Scholar
  40. Luo Y, Melillo J, Niu S, Beier C, Clark JS, Classen AT, Davidson E, Dukes JS, Evans R, Field CB. 2011. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change. Glob Chang Biol 17:843–54.CrossRefGoogle Scholar
  41. Marion G, Henry G, Freckman D, Johnstone J, Jones G, Jones M, Levesque E, Molau U, Mølgaard P, Parsons A. 1997. Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob Chang Biol 3:20–32.CrossRefGoogle Scholar
  42. Menge DN, Wolf AA, Funk JL. 2015. Diversity of nitrogen fixation strategies in Mediterranean legumes. Nat Plant 1:15064. doi: 10.1038/nplants.2015.64.CrossRefGoogle Scholar
  43. Niu S, Sherry RA, Zhou X, Luo Y. 2013. Ecosystem carbon fluxes in response to warming and clipping in a tallgrass prairie. Ecosystems 16:948–61.CrossRefGoogle Scholar
  44. Ponce-Campos GE, Moran MS, Huete A, Zhang Y, Bresloff C, Huxman TE, Eamus D, Bosch DD, Buda AR, Gunter SA. 2013. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494:349–52.CrossRefPubMedGoogle Scholar
  45. Poyatos R, Heinemeyer A, Ineson P, Evans JG, Ward HC, Huntley B, Baxter R. 2014. Environmental and vegetation drivers of seasonal CO2 fluxes in a Sub-arctic Forest-Mire Ecotone. Ecosystems 17:377–93.CrossRefGoogle Scholar
  46. Richardson AD, Black TA, Ciais P, Delbart N, Friedl MA, Gobron N, Hollinger DY, Kutsch WL, Longdoz B, Luyssaert S. 2010. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philoso Trans R Soc Lond B Biol Sci 365:3227–46.CrossRefGoogle Scholar
  47. Schimel DS. 1995. Terrestrial ecosystems and the carbon-cycle. Glob Chang Biol 1:77–91.CrossRefGoogle Scholar
  48. Shan Y, Chen D, Guan X, Zheng S, Chen H, Wang M, Bai Y. 2011. Seasonally dependent impacts of grazing on soil nitrogen mineralization and linkages to ecosystem functioning in Inner Mongolia grassland. Soil Biol Biochem 43:1943–54.CrossRefGoogle Scholar
  49. Shi C, Silva LC, Zhang H, Zheng Q, Xiao B, Wu N, Sun G. 2015. Climate warming alters nitrogen dynamics and total non-structural carbohydrate accumulations of perennial herbs of distinctive functional groups during the plant senescence in autumn in an alpine meadow of the Tibetan Plateau, China. Agric For Meteorol 200:21–9.CrossRefGoogle Scholar
  50. Shibata H, Hasegawa Y, Watanabe T, Fukuzawa K. 2013. Impact of snowpack decrease on net nitrogen mineralization and nitrification in forest soil of northern Japan. Biogeochemistry 116:69–82.CrossRefGoogle Scholar
  51. Smith MD, Knapp AK, Collins SL. 2009. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90:3279–89.CrossRefPubMedGoogle Scholar
  52. Stocker TF. 2014. Climate change 2013: the physical science basis: working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change: Cambridge University Press.Google Scholar
  53. Su H, Feng J, Axmacher JC, Sang W. 2015. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China. Sci Rep 5:9115. doi: 10.1038/srep09115.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sun S, Peng L, Wang G, Wu Y, Zhou J, Bing H, Yu D, Luo J. 2013. An improved open-top chamber warming system for global change research. Silva Fenn 47:960. doi: 10.14214/sf.960.CrossRefGoogle Scholar
  55. Suzuki RO. 2014. Combined effects of warming, snowmelt timing, and soil disturbance on vegetative development in a grassland community. Plant Ecol 215:1399–408.CrossRefGoogle Scholar
  56. Thompson LG, Yao T, Mosley-Thompson E, Davis M, Henderson K, Lin P-N. 2000. A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science 289:1916–19.CrossRefPubMedGoogle Scholar
  57. Väisänen M, Ylänne H, Kaarlejärvi E, Sjögersten S, Olofsson J, Crout N, Stark S. 2014. Consequences of warming on tundra carbon balance determined by reindeer grazing history. Nat Clim Chang 4:384–8.CrossRefGoogle Scholar
  58. Verheijen LM, Aerts R, Brovkin V, Cavender-Bares J, Cornelissen JH, Kattge J, Bodegom PM. 2015. Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. Glob Chang Biol 21:3074–86.CrossRefPubMedGoogle Scholar
  59. Walker MD, Wahren CH, Hollister RD, Henry GH, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB. 2006. Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci U S A 103:1342–6.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wan S, Hui D, Wallace L, Luo Y. 2005. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Glob Biogeochem Cycles. doi: 10.1029/2004GB002315.Google Scholar
  61. Wang S, Duan J, Xu G, Wang Y, Zhang Z, Rui Y, Luo C, Xu B, Zhu X, Chang X. 2012. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology 93:2365–76.CrossRefPubMedGoogle Scholar
  62. Ward SE, Ostle NJ, Oakley S, Quirk H, Henrys PA, Bardgett RD. 2013. Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ecol Lett 16:1285–93.CrossRefPubMedGoogle Scholar
  63. Way DA, Oren R. 2010. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30:669–88.CrossRefPubMedGoogle Scholar
  64. Whittington HR, Tilman D, Powers JS. 2013. Consequences of elevated temperatures on legume biomass and nitrogen cycling in a field warming and biodiversity experiment in a North American prairie. Funct Plant Biol 40:1147–58.CrossRefGoogle Scholar
  65. Wilcox KR, Fischer JC, Muscha JM, Petersen MK, Knapp AK. 2015. Contrasting above-and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes. Glob Chang Biol 21:335–44.CrossRefPubMedGoogle Scholar
  66. Wood TE, Cavaleri MA, Reed SC. 2012. Tropical forest carbon balance in a warmer world: a critical review spanning microbial-to ecosystem-scale processes. Biol Rev 87:912–27.CrossRefPubMedGoogle Scholar
  67. Xu X, Shi Z, Li D, Zhou X, Sherry RA, Luo Y. 2015. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming. Glob Chang Biol 21:3846–53.CrossRefPubMedGoogle Scholar
  68. Xu Z, Gong T, Li J. 2008. Decadal trend of climate in the Tibetan Plateau—regional temperature and precipitation. Hydrol Process 22:3056–65.CrossRefGoogle Scholar
  69. Yang Y, Wang G, Klanderud K, Wang J, Liu G. 2014. Plant community responses to five years of simulated climate warming in an alpine fen of the Qinghai-Tibetan Plateau. Plant Ecol Divers 8:211–18.CrossRefGoogle Scholar
  70. Zhang N, Xia J, Yu X, Ma K, Wan S. 2011. Soil microbial community changes and their linkages with ecosystem carbon exchange under asymmetrically diurnal warming. Soil Biol Biochem 43:2053–9.CrossRefGoogle Scholar
  71. Zhang SY, Li XY, Ma YJ, Zhao GQ, Li L, Chen J, Jiang ZY, Huang YM. 2014. Interannual and seasonal variability in evapotranspiration and energy partitioning over the alpine riparian shrub Myricaria squamosa Desv. on Qinghai-Tibet Plateau. Cold Reg Sci Technol 102:8–20.CrossRefGoogle Scholar
  72. Zhou L, Yin S, An S, Yang W, Deng Q, Xie D, Ji H, Ouyang Y, Cheng X. 2015. Spartina alterniflora invasion alters carbon exchange and soil organic carbon in eastern salt marsh of China. Clean Soil Air Water 43:569–76.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ji Chen
    • 1
    • 2
    • 3
    • 4
  • Yiqi Luo
    • 4
    • 5
  • Jianyang Xia
    • 6
    • 7
  • Kevin R. Wilcox
    • 4
  • Junji Cao
    • 2
    • 8
  • Xuhui Zhou
    • 6
    • 7
  • Lifen Jiang
    • 4
  • Shuli Niu
    • 9
  • Katerina Y. Estera
    • 10
  • Rujin Huang
    • 2
  • Feng Wu
    • 2
  • Tafeng Hu
    • 4
  • Junyi Liang
    • 4
  • Zheng Shi
    • 4
  • Jianfen Guo
    • 11
  • Rui-Wu Wang
    • 1
  1. 1.Center for Ecological and Environmental SciencesNorthwestern Polytechnical UniversityXi’anChina
  2. 2.State Key Laboratory of Loess and Quaternary Geology (SKLLQG), and Key Laboratory of Aerosol Chemistry and PhysicsInstitute of Earth Environment, Chinese Academy of SciencesXi’anChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Department of Microbiology and Plant BiologyUniversity of OklahomaNormanUSA
  5. 5.Center for Earth System Science, Tsinghua UniversityBeijingChina
  6. 6.Tiantong National Field Observation Station for Forest Ecosystem, School of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
  7. 7.Center for Global Change and Ecological ForecastingEast China Normal UniversityShanghaiChina
  8. 8.Institute of Global Environmental Change, Xi’an Jiaotong UniversityXi’anChina
  9. 9.Key Laboratory of Ecosystem Network Observation and Modeling, Synthesis Research Center of Chinese Ecosystem Research NetworkInstitute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesBeijingChina
  10. 10.Department of Environmental Science, Policy and ManagementUniversity of California at BerkeleyBerkeleyUSA
  11. 11.College of Geographical Science, Fujian Normal UniversityFuzhouChina

Personalised recommendations