, Volume 19, Issue 3, pp 490–503 | Cite as

Disentangling the Litter Quality and Soil Microbial Contribution to Leaf and Fine Root Litter Decomposition Responses to Reduced Rainfall

  • Pablo García-Palacios
  • Iván Prieto
  • Jean-Marc Ourcival
  • Stephan Hättenschwiler


Climate change-induced rainfall reductions in Mediterranean forests negatively affect the decomposition of plant litter through decreased soil moisture. However, the indirect effects of reduced precipitation on litter decomposition through changes in litter quality and soil microbial communities are poorly studied. This is especially the case for fine root litter, which contributes importantly to forests plant biomass. Here we analyzed the effects of long-term (11 years) rainfall exclusion (29% reduction) on leaf and fine root litter quality, soil microbial biomass, and microbial community-level physiological profiles in a Mediterranean holm oak forest. Additionally, we reciprocally transplanted soils and litter among the control and reduced rainfall treatments in the laboratory, and analyzed litter decomposition and its responses to a simulated extreme drought event. The decreased soil microbial biomass and altered physiological profiles with reduced rainfall promoted lower fine root—but not leaf—litter decomposition. Both leaf and root litter, from the reduced rainfall treatment, decomposed faster than those from the control treatment. The impact of the extreme drought event on fine root litter decomposition was higher in soils from the control treatment compared to soils subjected to long-term rainfall exclusion. Our results suggest contrasting mechanisms driving drought indirect effects on above-(for example, changes in litter quality) and belowground (for example, shifts in soil microbial community) litter decomposition, even within a single tree species. Quantifying the contribution of these mechanisms relative to the direct soil moisture-effect is critical for an accurate integration of litter decomposition into ecosystem carbon dynamics in Mediterranean forests under climate change.


carbon cycle climate change drought litter functional traits Mediterranean forests rainfall exclusion resilience soil decomposers 



We thank Noelia Portillo and Patrick Schevin for laboratory support. We would like to thank E.J. Sayer and an anonymous reviewer for their valuable comments and suggestions to improve the quality of this manuscript. All chemical and litter decomposition analyses (except the soil analyses specified in the text) were performed at the Plate-Forme d’Analyses Chimiques en Ecologie, LabEx Centre Méditerranéen de l’Environnement et de la Biodiversité. PGP was funded by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No DECOMFORECO-2011-299214.

Supplementary material

10021_2015_9946_MOESM1_ESM.docx (33 kb)
Supplementary material 1 (DOCX 32 kb)


  1. Aerts R. 1990. Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia 84:391–7.CrossRefGoogle Scholar
  2. Aerts R, van Bodegom PM, Cornelissen JHC. 2012. Litter stoichiometric traits of plant species of high-latitude ecosystems show high responsiveness to global change without causing strong variation in litter decomposition. New Phytol 96:181–8.CrossRefGoogle Scholar
  3. Allison SD, Lu Y, Weihe C, Goulden ML, Martiny AC, Treseder KK, Martiny JBH. 2013. Microbial abundance and composition influence litter decomposition response to environmental change. Ecology 94:714–25.CrossRefPubMedGoogle Scholar
  4. Anderson MJ. 2001. A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46.Google Scholar
  5. Anderson MJ, Gorley RN, Clarke KR. 2008. PERMANOVA+ for PRIMER: Guide to software and statistical methods. Plymouth: PRIMER-E.Google Scholar
  6. Ayres E, Steltzer H, Berg S, Wall DH. 2009. Soil biota accelerate decomposition in high-elevation forests by specializing in the breakdown of litter produced by the plant species above them. J Ecol 97:901–12.CrossRefGoogle Scholar
  7. Birch HF. 1958. The effect of soil drying on humus decomposition and nitrogen. Plant Soil 10:9–31.CrossRefGoogle Scholar
  8. Birouste M, Kazakou E, Blanchard A, Roumet C. 2012. Plant traits and decomposition: are the relationships for roots comparable to those for leaves? Ann Bot 109:463–72.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM. 2003. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69:3593–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Canadell J, Rodà F. 1991. Root biomass of Quercus ilex in a montane Mediterranean forest. Can J For Res 21:1771–8.CrossRefGoogle Scholar
  11. Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–33.CrossRefPubMedGoogle Scholar
  12. Coq S, Souquet JM, Meudec E, Cheynier V, Hättenschwiler S. 2010. Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91:2088–91.CrossRefGoogle Scholar
  13. Curiel Yuste J, Nagy M, Janssens IA, Carrara A, Ceulemans R. 2005. Soil respiration in a mixed temperate forest and its contribution to total ecosystem respiration. Tree Physiol 25:609–19.CrossRefPubMedGoogle Scholar
  14. Curiel Yuste J, Peñuelas J, Estiarte M, Garcia-Mas J, Mattana S, Ogaya R, Pujol M, Sardans J. 2011. Drought-resistant fungi control soil organic matter decomposition and its response to temperature. Glob Chang Biol 17:1475–86.CrossRefGoogle Scholar
  15. De Vries F, Liiri M, Bjørnlund L, Bowker M, Christensen S, Setälä H, Bardgett R. 2012. Land use alters the resistance and resilience of soil food webs to drought. Nat Clim Chang 2:276–80.CrossRefGoogle Scholar
  16. Denef K, Six J, Paustian K, Merckx R. 2001. Importance of macroaggregate dynamics in controlling soil carbon stabilization: short-term effects of physical disturbance induced by dry–wet cycles. Soil Biol Biochem 33:2145–53.CrossRefGoogle Scholar
  17. Evans SE, Wallenstein MD. 2014. Climate change alters the ecological strategies of soil bacteria. Ecol Lett 17:155–64.CrossRefPubMedGoogle Scholar
  18. Fierer N, Schimel JP. 2003. A proposed mechanism for the pulse in CO2 production commonly observed following the rapid rewetting of a dry soil. Soil Sci Soc Am J 67:798–805.CrossRefGoogle Scholar
  19. Freschet GT, Aerts R, Cornelissen JHC. 2012. A plant economics spectrum of litter decomposition. Funct Ecol 26:56–65.CrossRefGoogle Scholar
  20. Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JHC. 2013. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. J Ecol 101:943–52.CrossRefGoogle Scholar
  21. García-Palacios P, Bowker MA, Maestre FT, Soliveres S, Valladares F, Papadopoulos J, Escudero A. 2011a. Ecosystem development in roadside grasslands: biotic control, plant–soil interactions and dispersal limitations. Ecol Appl 21:2806–21.CrossRefPubMedPubMedCentralGoogle Scholar
  22. García-Palacios P, Bowker MA, Chapman SJ, Maestre FT, Soliveres S, Gallardo A, Valladares F, Guerrero C, Escudero A. 2011b. Early-successional vegetation changes after roadside prairie restoration modify processes related with soil functioning by changing microbial functional diversity. Soil Biol Biochem 43:1245–53.CrossRefGoogle Scholar
  23. García-Palacios P, Milla R, Delgado-Baquerizo M, Martín-Robles N, Álvaro-Sánchez M, Wall DH. 2013. Side-effects of plant domestication: ecosystem impacts of changes in litter quality. New Phytol 198:504–13.CrossRefPubMedGoogle Scholar
  24. Giorgi F. 2006. Climate change hot-spots. Geophys Res Lett 33:L08707.CrossRefGoogle Scholar
  25. Halverson LJ, Jones TM, Firestone MK. 2000. Release of intracellular solutes by four soil bacteria exposed to dilution stress. Soil Sci Soc Am J 64:1630–7.CrossRefGoogle Scholar
  26. Harper CW, Blair JM, Fay PA, Knapp AK, Carlisle JD. 2005. Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem. Glob Chang Biol 11:322–34.CrossRefGoogle Scholar
  27. Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB. 2010. Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia 162:505–13.CrossRefPubMedGoogle Scholar
  28. Jackson RB, Mooney HA, Schulze ED. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci USA 94:7362–6.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kipfer T, Wohlgemuth T, van der Heijden MGA, Ghazoul J, Egli S. 2012. Growth response of drought-stressed Pinus sylvestris seedlings to single- and multi-species inoculation with ectomycorrhizal fungi. PLoS ONE 7(4):e35275.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Limousin JM, Rambal S, Ourcival JM, Rocheteau A, Joffre R, Rodríguez-Cortina R. 2009. Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Glob Chang Biol 15:2163–75.CrossRefGoogle Scholar
  31. Limousin JM, Rambal S, Ourcival JM, Rodríguez-Calcerrada J, Pérez-Ramos IM, Rodríguez-Cortina R, Misson L, Joffre R. 2012. Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought. Oecologia 169:565–77.CrossRefPubMedGoogle Scholar
  32. Marigo G. 1973. Sur une méthode de fractionnement et d’estimation des composés phénoliques chez les végétaux. Analusis 2:106–10.Google Scholar
  33. McClaugherty CA, Aber JD, Melillo JM. 1982. The rate of fine roots in organic matter nitrogen budgets of two forest ecosystems. Ecology 63:1481–90.CrossRefGoogle Scholar
  34. Misson L, Rocheteau A, Rambal S, Ourcival JM, Limousin JM, Rodríguez-Cortina R. 2010. Functional changes in the controls of carbon fluxes after 3 years of increased drought in a Mediterranean evergreen forest? Glob Change Biol 16:2461–575.Google Scholar
  35. Norby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG. 2004. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proc Natl Acad Sci USA 101:9689–93.Google Scholar
  36. Ogaya R, Peñuelas J. 2006. Contrasting foliar responses to drought in Quercus ilex and Phillyrea latifolia. Biol Plant 50:373–82.CrossRefGoogle Scholar
  37. Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, De Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, Ter Steege H, Van Der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC. 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234.CrossRefGoogle Scholar
  38. Pesaro M, Widmer F, Nicollier G, Zeyer J. 2003. Effects of freeze–thaw stress during soil storage on microbial communities and methidathion degradation. Soil Biol Biochem 35:1049–61.CrossRefGoogle Scholar
  39. Porter LJ, Hrstich LN, Chan BG. 1986. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25:223–30.CrossRefGoogle Scholar
  40. R Development Core Team. 2011. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  41. Rambal S, Ourcival JM, Joffre R, Mouillot F, Nouvellon Y, Reichstein M, Rocheteau A. 2003. Drought controls over conductance and assimilation of a Mediterranean evergreen ecosytem: scaling from leaf to canopy. Glob Change Biol 9:1813–24.CrossRefGoogle Scholar
  42. Richard F, Roy M, Shahin O, Sthultz C, Duchemin M, Joffre R, Selosse MA. 2011. Ectomycorrhizal communities in a Mediterranean forest ecosystem dominated by Quercus ilex: seasonal dynamics and response to drought in the surface organic horizon. Ann Forest Sci 68:57–68.CrossRefGoogle Scholar
  43. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH. 2000. Global biodiversity scenarios for the year 2100. Science 287:1770–4.CrossRefPubMedGoogle Scholar
  44. Sanaullah M, Chabbi A, Charrier X, Rumpel C. 2012. How does drought stress influence the decomposition of plant litter with contrasting quality in a grassland ecosystem? Plant Soil 353:277–88.CrossRefGoogle Scholar
  45. Sardans J, Peñuelas J. 2005. Increasing drought decreases phosphorus availability in an evergreen Mediterranean forest. Plant Soil 267:367–77.CrossRefGoogle Scholar
  46. Sardans J, Peñuelas J. 2007. Drought changes phosphorus and potassium accumulation patterns in an evergreen Mediterranean forest. Funct Ecol 21:191–201.CrossRefGoogle Scholar
  47. Saura-Mas S, Estiarte M, Peñuelas J, Lloret F. 2012. Effects of climate change on leaf litter decomposition across post-fire plant regenerative groups. Environ Exp Bot 77:274–82.CrossRefGoogle Scholar
  48. Sheffield J, Wood EF. 2008. Projected changes in drought occurence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105.CrossRefGoogle Scholar
  49. Somot S, Sevault F, Deque M, Crepon M. 2008. 21st century climate change scenario for the Mediterranean using a couple atmosphere-ocean regional climate model. Glob Planet Change 63:112–26.CrossRefGoogle Scholar
  50. Terradas J. 1999. Holm oaks and holm oak forests: an introduction. In: Roda F, Retana J, Gracia CA, Bellot J, Eds. Ecology of Mediterranean evergreen oak forests. Berlin: Springer. p 3–14.CrossRefGoogle Scholar
  51. Violle C, Enquist BJ, McGill BJ, Jiang L, Albert C, Hulshof C, Jung V, Messier J. 2012. The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–52.CrossRefPubMedGoogle Scholar
  52. Vogel A, Eisenhauer N, Weigelt A, Scherer-Lorenzen M. 2013. Plant diversity does not buffer drought effects on early-stage mass loss rate and microbial processes. Glob Change Biol 91:485–96.Google Scholar
  53. Walter J, Hein R, Beierkuhnlein C, Hammer V, Jentsch A, Schädler M, Schuerings J, Kreyling J. 2013. Combined effects of multifactor climate change and land-use on decomposition in temperate grassland. Soil Biol Biochem 60:10–18.CrossRefGoogle Scholar
  54. Wang H, Liu S, Mo J. 2010. Correlation between leaf litter and fine root decomposition among subtropical tree species. Plant Soil 335:289–98.CrossRefGoogle Scholar
  55. Xiang SH, Doyle A, Holden PA, Schimel JP. 2008. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biol Biochem 40:2281–9.CrossRefGoogle Scholar
  56. Zhang D, Hui D, Luo Y, Zhou G. 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Centre d’Ecologie Fonctionnelle et Evolutive (CEFE)CNRS – Université de Montpellier – Université Paul Valéry Montpellier – EPHEMontpellier Cedex 5France

Personalised recommendations