, Volume 18, Issue 7, pp 1224–1239 | Cite as

Landscape Control on the Spatial and Temporal Variability of Chromophoric Dissolved Organic Matter and Dissolved Organic Carbon in Large African Rivers

  • Thibault LambertEmail author
  • François Darchambeau
  • Steven Bouillon
  • Bassirou Alhou
  • Jean-Daniel Mbega
  • Cristian R. Teodoru
  • Frank C. Nyoni
  • Philippe Massicotte
  • Alberto V. Borges


The characteristics of colored dissolved organic matter (CDOM) as well as the concentrations and stable isotope composition (δ13C) of dissolved organic carbon (DOC) were characterized in several large rivers of Africa including the Congo, Niger, Zambezi, and Ogooué basins. We compared the spatial and temporal patterns of dissolved organic matter (DOM) quantity and quality along with various environmental gradients, including hydrology, river size, catchment vegetation, and connectivity to land. The optical proxies used include the absorption coefficient at 350 nm, the specific ultra-violet absorbance, and the spectral slope ratio (S R = 275–295-nm slope divided by 350–400-nm slope). Our results show that land cover plays a primary role in controlling both DOC concentration and optical properties of DOM in tropical freshwaters. A higher cover of dense forest in the catchment leads to a higher quantity of highly aromatic DOM in the river network, whereas an increasing savannah cover results in lower DOC concentrations and less absorptive DOM. In addition to land cover, the watershed morphology (expressed by the average slope) exerts a strong control on DOC and CDOM in tropical rivers. Our results also show that the percentage of C3 and C4 vegetation cover is not an accurate predictor for DOM and CDOM quality in rivers due to the importance of the spatial distribution of land cover within the drainage network. The comparison of our results with previously published CDOM data in temperate and high-latitude rivers highlights that DOM in tropical freshwaters is generally more aromatic, and shows a higher capacity for absorbing sunlight irradiance.


Carbon cycle Colored dissolved organic matter Tropical rivers Land cover Landscape Carbon isotopes 



The dataset used in this study was collected in the framework of projects funded by the European Research Council (ERC-StG 240002, AFRIVAL—African river basins: Catchment-scale carbon fluxes and transformations), the Fonds National de la Recherche Scientifique (FRNS, Transcongo, 14711103), the Research Foundation Flanders (FWO-Vlaanderen), and the Belgian Federal Science Policy (BELSPO-SSD project COBAFISH). We thank C. Lancelot for access to the Perkin-Elmer UV/Vis 650S, T. Mambo Baba, and E. Tambwe Lukosha (Université de Kisangani, DRC) for collection of Congo at Kinsagani and Tshopo time-series data collection, Y. Yamashita and P. Mann for providing their datasets from the Guayana Shield and Congo Basin, respectively, subject-matter editor (Michael Pace) and two anonymous reviewers for constructive comments on the previous version of the ms. Data from Arctic Rivers were collected in the framework of projects funded by the Arctic Great Rivers Observatory (NSF-0732522 and NSF-1107774). TL is a postdoctoral researcher at the FNRS. AVB is a senior research associate at the FNRS.

Supplementary material

10021_2015_9894_MOESM1_ESM.pdf (5 kb)
Supplementary material 1 (PDF 5 kb)
10021_2015_9894_MOESM2_ESM.pdf (122 kb)
Supplementary material 2 (PDF 121 kb)
10021_2015_9894_MOESM3_ESM.pdf (22 kb)
Supplementary material 3 (PDF 21 kb)
10021_2015_9894_MOESM4_ESM.tif (801 kb)
Supplementary material 4 (TIFF 801 kb)
10021_2015_9894_MOESM5_ESM.tif (569 kb)
Supplementary material 5 (TIFF 569 kb)
10021_2015_9894_MOESM6_ESM.tif (278 kb)
Supplementary material 6 (TIFF 277 kb)
10021_2015_9894_MOESM7_ESM.tif (490 kb)
Supplementary material 7 (TIFF 490 kb)
10021_2015_9894_MOESM8_ESM.tif (541 kb)
Supplementary material 8 (TIFF 540 kb)


  1. Abril G, Martinez J-M, Artigas LF, Moreira-Turcq P, Benedetti MF, Vidal L, Meziane T, Kim J-H, Bernardes MC, Savoye N, Deborde J, Souza EL, Alberic P, Landim de Souza MF, Roland F. 2014. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505:395–8.CrossRefPubMedGoogle Scholar
  2. Aitkenhead-Peterson J, McDowell W, Neff J, Stuart E, Robert L. 2003. Sources, production, and regulation of allochthonous dissolved organic matter inputs to surface waters. San Diego: Academic Press.CrossRefGoogle Scholar
  3. Amado AM, Meirelles-Pereira F, Vidal LDO, Sarmento H, Suhett A, Farjalla VF, Cotner J, Roland F. 2013. Tropical freshwater ecosystems have lower bacterial growth efficiency than temperate ones. Frontiers in Microbiology 4:167.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Amaral J, Suhett A, Melo S, Farjalla V. 2013. Seasonal variation and interaction of photodegradation and microbial metabolism of DOC in black water Amazonian ecosystems. Aquatic Microbial Ecology 70:157–68.CrossRefGoogle Scholar
  5. Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F. 2008. Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience 1(2):95–100.CrossRefGoogle Scholar
  6. Bird M, Pousai P. 1997. Variations of δ13C in the surface soil organic carbon pool. Global Biogeochemical Cycles 11:313–22.CrossRefGoogle Scholar
  7. Borges AV, Darchambeau F, Teodoru CR, Marwick T, Tamooh F, Geeraert N, Omengo FO, Guérin F, Lambert T, Morana C, Okuku E, Bouillon S. 2015. Globally significant greenhouse gas emissions from African inland waters. Nature Geoscience (in press).Google Scholar
  8. Bouillon S, Yambélé A, Gillikin DP, Teoduru C, Darchambeau F, Lambert T, Borges AV. 2014. Contrasting biogeochemical characteristics of the Oubangui River and tributaries (Congo River basin). Scientific Reports 4:5402.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Cole JJ, Prairie Y, Caraco NF et al. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–85.CrossRefGoogle Scholar
  10. Dewitte O, Jones A, Spaargaren O, Breuning-Madsen H, Brossard M, Dampha A, Deckers J, Gallali T, Hallett S, Jones R, Kilasara M, Le Roux P, Michéli E, Montanarella L, Thiombiano L, Van Ranst E, Yemefack M, Zougmore R. 2013. Harmonisation of the soil map of Africa at the continental scale. Geoderma 211–212:138–53.CrossRefGoogle Scholar
  11. Downing BD, Boss E, Bergamaschi BA, Fleck JA, Lionberger MA, Ganju NK, Schoelhamer DH, Fujii R. 2009. Quantifying fluxes and characterizing compositional changes of dissolved organic matter in aquatic systems in situ using combined acoustic and optical measurements. Limnology and Oceanography Methods 7:119–31.CrossRefGoogle Scholar
  12. Eckhardt BW, Moore TR. 1990. Controls on dissolved organic carbon concentrations in Streams, Southern Québec. Canadian Journal of Fisheries and Aquatic Sciences 47:1537–44.CrossRefGoogle Scholar
  13. Fasching C, Behounek B, Singer GA, Battin TJ. 2014. Microbial degradation of terrigenous dissolved organic matter and potential consequences for carbon cycling in brown-water streams. Scientific Reports 4:4981.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Frost P, Larson J, Johnston C, Young K, Maurice P, Lamberti G, Bridgham S. 2006. Landscape predictors of stream dissolved organic matter concentration and physicochemistry in a Lake Superior river watershed. Aquatic Sciences 68:40–51.CrossRefGoogle Scholar
  15. Hanley KW, Wollheim WM, Salisbury J, Huntington T, Aiken G. 2013. Controls on dissolved organic carbon quantity and chemical character in temperate rivers of North America. Global Biogeochemical Cycles 27:492–504.CrossRefGoogle Scholar
  16. Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K. 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography 53:955–69.CrossRefGoogle Scholar
  17. Jaffé R, McKnight DM, Maie N, Cory R, McDowell WH, Campbell JL. 2008. Spatial and temporal variations in DOM composition in ecosystems: the importance of long-term monitoring of optical properties. Journal of Geophysical Research 113:G04032.CrossRefGoogle Scholar
  18. Jaffé R, Yamashita Y, Maie N, Cooper WT, Dittmar T, Dodds WK, Jones JB, Myoshi T, Ortiz-Zayas JR, Podgorski DC, Watanabe A. 2012. Dissolved organic matter in headwater streams: compositional variability across climatic regions of North America. Geochimica Et Cosmochimica Acta 94:95–108.CrossRefGoogle Scholar
  19. Johannessen SC, Miller W. 2001. Quantum yield for the photochemical production of dissolved inorganic carbon in seawater. Marine Chemistry 76:271–83.CrossRefGoogle Scholar
  20. Kohn MJ. 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. Proceedings of the National Academy of Sciences 107:19691–5.CrossRefGoogle Scholar
  21. Lambert T, Pierson-Wickmann AC, Gruau G, Jaffrezic A, Petitjean P, Thibault JN, Jeanneau L. 2013. Hydrologically driven seasonal changes in the sources and production mechanisms of dissolved organic carbon in a small lowland catchment. Water Resources Research 49:5792–803.CrossRefGoogle Scholar
  22. Lapierre J-F, Guillemette F, Berggren M, Del Giorgio PA. 2013. Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems. Nature Communications 4:2972.PubMedGoogle Scholar
  23. Lapierre JF, del Giorgio PA. 2012. Geographical and environmental drivers of regional differences in the lake pCO2 versus DOC relationship across northern landscapes. Journal of Geophysical Research 117:15–24.CrossRefGoogle Scholar
  24. Lapierre JF, del Giorgio PA. 2014. Partial coupling and differential regulation of biologically and photochemically labile dissolved organic carbon across boreal aquatic networks. Biogeosciences 11:5969–85.CrossRefGoogle Scholar
  25. Laraque A, Bricquet JP, Pandi A, Olivry JC. 2009. A review of material transport by the Congo River and its tributaries. Hydrological Processes 23:3216–24.CrossRefGoogle Scholar
  26. Mann PJ, Spencer RGM, Dinga BJ, Poulsen JR, Hernes PJ, Fiske G, Salter ME, Wang ZA, Hoering KA, Six J, Holmes RM. 2014. The biogeochemistry of carbon across a gradient of streams and rivers within the Congo Basin. Journal of Geophysical Research Biogeoscience 119:687–702.CrossRefGoogle Scholar
  27. Marwick T, Borges AV, Van Acker K, Darchambeau F, Bouillon S. 2014. Disproportionate contribution of riparian inputs to organic carbon pools in freshwater systems. Ecosystems 17(6):974–89.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Massicotte P, Gratton D, Frenette J-J, Assani AA. 2013. Spatial and temporal evolution of the St. Lawrence River spectral profile: a 25-year case study using Landsat 5 and 7 imagery. Remote Sensing of Environment 136:433–41.CrossRefGoogle Scholar
  29. Mayaux P, Bartholomé E, Fritz S, Belward A. 2004. A new land-cover map of Africa for the year 2000. Journal of Biogeography 31:861–77.CrossRefGoogle Scholar
  30. Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD, Richey JE, Brown TAW. 2005. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436(7050):538–41.CrossRefPubMedGoogle Scholar
  31. McClain ME, Richey JE, Brandes JA, Pimentel TP. 1997. Dissolved organic matter and terrestrial-lotic linkages in the Central Amazon Basin of Brazil. Global Biogeochemical Cycles 11:295–311.CrossRefGoogle Scholar
  32. Meybeck M. 1993. Riverine transport of atmospheric carbon: sources, global typology and budget. Water, Air, and Soil Pollution 70:443–63.CrossRefGoogle Scholar
  33. Morana C, Sarmento H, Descy J-P, Gasol JM, Borges A, Bouillon S, Darchambeau F. 2014. Production of dissolved organic matter by phytoplankton and its uptake by heterotrophic prokaryotes in large tropical lakes. Limnology and Oceanography 59(4):1364–75.CrossRefGoogle Scholar
  34. Neff JC, Finlay JC, Zimov SA, Davydov SP, Carrasco JJ, Schuur EAG, Davydova AI. 2006. Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams. Geophysical Research Letters 33:L23401.CrossRefGoogle Scholar
  35. O’Donnell JA, Aiken GR, Walvoord MA, Butler KD. 2012. Dissolved organic matter composition of winter flow in the Yukon River basin: implications of permafrost thaw and increased groundwater discharge. Global Biogeochemical Cycles 26(4):GB0E06.Google Scholar
  36. Pérez MAP, Moreira-Turcq P, Gallard H, Allard T, Benedetti MF. 2011. Dissolved organic matter dynamic in the Amazon basin: sorption by mineral surfaces. Chemical Geology 286:158–68.Google Scholar
  37. Prairie Y, Del Giorgio PA, Roehm C, Tremblay A. 2010. Insights on riverine metabolism from continuous measurements of CDOM fluorescence in Eastmain-1 Reservoir. Quebec Verhandlungen des Internationalen Verein Limnologie 30:1545–8.Google Scholar
  38. Qualls RG, Haines BL, Swank WT. 1991. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology 72:254–66.CrossRefGoogle Scholar
  39. Quay PD, Wilbur DO, Richey JE, Hedges JI, Devol AH. 1992. Carbon cycling in the Amazon River: implications from the 13C compositions of particles and solutes. Limnology and Oceanography 37:857–71.CrossRefGoogle Scholar
  40. Rasmussen JB, Godbout L, Schallenberg M. 1989. The humic content of lake water and its relationships to watershed and lake morphometry. Limnology and Oceanography 34:1336–43.CrossRefGoogle Scholar
  41. Raymond PA, McClelland JW, Holmes RM, Zhulidov AV, Mull K, Perterson BJ, Striegl RG, Aiken GR, Gurtovaya TY. 2007. Flux and age of dissolved organic carbon export to the Artic Ocean: a carbon isotopic study of the five lalarge rivers. Global Biogeochemical Cycles 21:GB4011.Google Scholar
  42. Remington S, Krusche A, Richey J. 2011. Effects of DOM photochemistry on bacterial metabolism and CO2 evasion during falling water in a humic and a whitewater river in the Brazilian Amazon. Biogeochemistry 105:185–200.CrossRefGoogle Scholar
  43. Rochelle-Newall E, Hulot FD, Janeau JL, Merroune A. 2014. CDOM fluorescence as a proxy of DOC concentration in natural waters: a comparison of four contrasting tropical systems. Environmental Monitoring and Assessment 186:589–96.CrossRefPubMedGoogle Scholar
  44. Salisbury J, Vandemark D, Campbell J, Hunt C, Wisser D, Reul N, Chapron B. 2011. Spatial and temporal coherence between Amazon River discharge, salinity, and light absorption by colored organic carbon in western tropical Atlantic surface waters. Journal of Geophysical Research Oceans 116:C00H02.Google Scholar
  45. Seyler P, Coynel A, Moreira-Turcq P, Etcheber H, Colas C, Orange D, Bricquet JP, Laraque A, Guyot JL, Olivry JC, Meybeck M. 2004. Organic carbon transported by the Equatorial rivers: example of Congo-Zaire and Amazon basins. In: Roose ELR, Feller C, Barthès B, Stewart BA, Eds. Soil erosion and carbon dynamics. Boca Raton (FL): Taylor et Francis, pp. 255–274.Google Scholar
  46. Sobek S, Tranvik LJ, Cole JJ. 2005. Temperature independence of carbon dioxide supersaturation in global lakes. Global Biogeochemical Cycles 19(2):GB2003.CrossRefGoogle Scholar
  47. Spencer RGM, Butler KD, Aiken GR. 2012. Dissolved organic carbon and chromophoric dissolbed organic matter properties of rivers in the USA. Journal of Geophysical Research 117:G03001.CrossRefGoogle Scholar
  48. Spencer RGM, Stubbins A, Hernes PJ, Baker A, Mopper K, Aufdenkampe AK, Dyda RY, Mwamba VL, Mangangu AM, Wabakanghanzi JN, Six J. 2009. Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River. Journal of Geophysical Research 114:G03010.Google Scholar
  49. Stedmon CA, Amon RMW, Rinehart AJ, Walker SA. 2011. The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan Arctic trends and differences. Marine Chemistry 124:108–18.CrossRefGoogle Scholar
  50. Stedmon CA, Markager S. 2005. Resolving the variability in DOM fluorescence in a temperate estuary and its catchment unsing PARAFAC. Limnology and Oceanography 50:686–97.CrossRefGoogle Scholar
  51. Striegl RG, Aiken GR, Dornblaser MM, Raymond PA, Wickland KP. 2005. A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophysical Research Letters 32:L21413.CrossRefGoogle Scholar
  52. Tamooh F, Meersche K, Meysman F, Marwick TR, Borges A, Merckx R, Dehairs F, Schmidt S, Nyunja J, Bouillon S. 2012. Distribution and origin of suspended matter and organic carbon pools in the Tana River Basin, Kenya. Biogeosciences 9:2905–20.CrossRefGoogle Scholar
  53. Teodoru CR, Nyoni FC, Borges AV, Darchambeau F, Nyambe I, Bouillon S. 2015. Dynamics of greenhouse gases (CO2, CH4, N2O) along the Zambezi River and major tributaries, and their importance in the riverine carbon budget. Biogeosciences 12:2431–53.CrossRefGoogle Scholar
  54. USGS. 2000. HYDRO1K elevation derivative database, Center for Earth Resources Observation and Science, Sioux Falls, S.D,
  55. Ward ND, Keil RG, Medeiros PM, Brito DC, Cunha AC, Dittmar T, Yager PL, Krusche AV, Richey JE. 2013. Degradation of terrestrially derived macromolecules in the Amazon River. Nature Geoscience 6:530–3.CrossRefGoogle Scholar
  56. Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science and Technology 37:4702–8.CrossRefPubMedGoogle Scholar
  57. Wilson HF, Xenopoulos MA. 2009. Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nature Geoscience 2:37–41.CrossRefGoogle Scholar
  58. Wynn JG, Bird MI. 2007. C4-derived soil organic carbon decomposes faster than its C3 counterpart in mixed C3/C4 soils. Global Biogeochemical Cycles 13:1–12.Google Scholar
  59. Yacobi YZ, Alberts JJ, Takacs M, McElvaine M. 2003. Absorption spectroscopy of colored dissolved organic carbon in Georgia (USA) rivers: the impact of molecular size distribution. Journal of Limnology 62:41–6.CrossRefGoogle Scholar
  60. Yamashita Y, Maie N, Briceno H, Jaffé R. 2010. Optical characterization of dissolved organic matter in tropical rivers of the Guayana Shield, Venezuela. Journal of Geophysical Research 115:G00F10.Google Scholar
  61. Zurbrügg R, Suter S, Lehmann MF, Wehrli B, Senn DB. 2013. Organic carbon and nitrogen export from a tropical dam-impacted floodplain system. Biogeosciences 10:23–38.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Thibault Lambert
    • 1
    Email author
  • François Darchambeau
    • 1
  • Steven Bouillon
    • 2
  • Bassirou Alhou
    • 3
  • Jean-Daniel Mbega
    • 4
  • Cristian R. Teodoru
    • 2
  • Frank C. Nyoni
    • 5
  • Philippe Massicotte
    • 6
  • Alberto V. Borges
    • 1
  1. 1.Chemical Oceanography UnitUniversity of LiègeLiègeBelgium
  2. 2.Department Earth and Environmental SciencesK.U. LeuvenLeuvenBelgium
  3. 3.University of NiameyNiameyNiger
  4. 4.Institut de Recherches Agronomiques et Forestières du GabonLibrevilleGabon
  5. 5.Integrated Water Resources Management CenterUniversity of ZambiaLusakaZambia
  6. 6.Département des sciences de l’environnementUniversité du Québec à Trois-RivièresTrois-RivièresCanada

Personalised recommendations