, Volume 18, Issue 4, pp 589–604 | Cite as

Seasonal Changes in Metabolic Rates of Two Tropical Lakes in the Atlantic Forest of Brazil

  • Ludmila Silva Brighenti
  • Peter Anton Staehr
  • Laura Martins Gagliardi
  • Luciana Pena Mello Brandão
  • Eliane Côrrea Elias
  • Nelson Azevedo Santos Teixeira de Mello
  • Francisco Antônio Rodrigues Barbosa
  • José Fernandes Bezerra-Neto


We studied the importance of environmental drivers for the seasonal dynamics of gross primary production (GPP), ecosystem respiration (R), and net ecosystem production in surface waters of two tropical lakes in southeast Brazil (Carioca—CA; and Dom Helvécio—DH), 2011 and 2012, using high frequency measurements of dissolved oxygen. Metabolic rates were approximately twice as high during the fully mixed winter periods, compared to the summer periods. For both lakes, GPP was approximately 30% lower during the warmer and dryer spring of 2012 compared to 2011. Seasonal changes in GPP and R were negatively correlated to water column stability (GPP r = −0.82, p < 0.001; R r = −0.80, p < 0.001). Periods with high stability coincided with warm waters which reduced mixing and internal inputs of nutrients from hypolimnetic waters. GPP was accordingly suppressed in both lakes during summer due to a combination of nutrient depletion and photo-inhibition, which was more pronounced during summer. These conditions were more prevailing during the warm and dry year of 2012, indicating ecosystem responses in carbon cycling to the ongoing regional climate changes.


primary production respiration seasonality tropics mixing water column stability photo-inhibition light saturation 



We thank the Global Lake Ecological Observatory Network (GLEON) for providing the opportunity to start the collaborations that made this work possible. We are also grateful for the logistic support by the staff of the Parque Estadual do Rio Doce and for the meteorological data provided by Instituto Nacional de Pesquisas Espaciais. This study was funded by Pesquisas Ecológicas de Longa Duração/CNPq (nº 403698/2012-0) in addition to support from Fapemig (nº CRA-APQ-02623-10) and from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, nº 88881.030499/2013-01). L.S.B. was supported by CAPES. P.A.S. was supported by the Danish Council for Independent Research Natural Sciences grant no 10-085238. We also thank Marcelo Costa for support in laboratory analysis and John Melack for valuable comments in a previous version of this manuscript.


  1. APHA. 2005. Standard methods for the examination of water and wastewater. 21st edn. Washington, D.C: American Public Health Association.Google Scholar
  2. Amaral J, Suhett A, Melo S, Farjalla V. 2013. Seasonal variation and interaction of photodegradation and microbial metabolism of DOC in black water Amazonian ecosystems. Aquat Microb Ecol 70:157–68.CrossRefGoogle Scholar
  3. Barbosa FAR, Padisák J. 2002. The forgotten lake stratification pattern: atelomixis, and its ecological importance. Verhandlungen des Internationalen Verein Limnologie 28:1385–95.Google Scholar
  4. Barbosa FAR, Tundisi JG. 1980. Primary production of phytoplankton and environmental characteristics of a shallow quaternary lake at Eastern Brazil. Arch für Hydrobiol 90:139–61.Google Scholar
  5. Barbosa FA, Tundisi JG. 1989. Diel variations in a shallow tropical Brazilian lake I. The influence of temperature variation on the distribution of dissolved oxygen and nutrients. Arch für Hydrobiol 116:333–49.Google Scholar
  6. Barros CFA, Souza MBG, Barbosa FAR. 2006. Seasonal mechanisms driving phytoplankton size structure in a tropical deep lake (Dom Helvécio Lake, South-East Brazil). Acta limnol Bras 18:55–66.Google Scholar
  7. Bezerra-Neto JF, Briguenti LS, Pinto-Coelho RM. 2010. A new morphometric study of Carioca Lake, Parque Estadual do Rio Doce (PERD), Minas Gerais State, Brazil. Acta Scientiarum. Biolog Sci 32:49–54.Google Scholar
  8. Bezerra-Neto JF, Pinto-Coelho RM. 2008. Morphometric study of Lake Dom Helvécio, Parque Estadual do Rio Doce (PERD), Minas Gerais, Brazil: a re-evaluation. Acta Limnol Bras 20:161–7.Google Scholar
  9. Biddanda BA, Cotner JB. 2002. Love handles in aquatic ecosystems: the role of dissolved organic carbon drawdown, resuspended sediments, and terrigenous inputs in the carbon balance of Lake Michigan. Ecosystems 5:431–45.CrossRefGoogle Scholar
  10. Bouchard JN, Longhi ML, Roy S, Campbell DA, Ferreyra G. 2008. Interaction of nitrogen status and UVB sensitivity in a temperate phytoplankton assemblage. J Exp Mar Biol Ecol 359:67–76.CrossRefGoogle Scholar
  11. Bracchini L, Cózar A, Dattilo AM, Falcucci M, Gonzales R, Loiselle S, Hull V. 2004. Analysis of extinction in ultraviolet and visible spectra of water bodies of the Paraguay and Brazil wetlands. Chemosphere 57:1245–55.CrossRefPubMedGoogle Scholar
  12. Charlton MN, Lean DRS. 1987. Sedimentation, resuspension, and oxygen depletion in Lake Erie (1979). J Great Lakes Res 13:709–23.CrossRefGoogle Scholar
  13. Christian D, Sheng YP. 2003. Relative influence of various water quality parameters on light attenuation in Indian River Lagoon. Estuar Coast Shelf Sci 57:961–71.CrossRefGoogle Scholar
  14. Cole JJ, Pace ML, Carpenter SR, Kitchell JF. 2000. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnol Oceanogr 45:1718–30.CrossRefGoogle Scholar
  15. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–85.CrossRefGoogle Scholar
  16. Coloso JJ, Cole JJ, Hanson PC, Pace ML. 2008. Depth-integrated, continuous estimates of metabolism in a clear-water lake. Can J Fish Aquat Sci 65:712–22.CrossRefGoogle Scholar
  17. Diehl S, Berger S, Ptacnik R, Wild A. 2002. Phytoplankton, light, and nutrients in a gradient of mixing depths: field experiments. Ecology 83:399–411.CrossRefGoogle Scholar
  18. Downing JA, McClain M, Twilley R, Melack JM, Elser J, Rabalais NN, Lewis WM, Turner RE, Corredor J, Soto D, Yanez-Aranciba A, Kopaska JA, Howarth RW. 1999. The impact of accelerating land-use change on the N-Cycle of tropical aquatic ecosystems: current conditions and projected changes. Biogeochemistry 46:109–48.Google Scholar
  19. Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–97.CrossRefGoogle Scholar
  20. Elser JJ, Kimmel BL. 1985. Photoinhibition of temperate lake phytoplankton by near surface irradiance: evidence from vertical profiles and field experiments. J Phycol 21:419–27.CrossRefGoogle Scholar
  21. Fahnenstiel GL, Stone RA, McCormick MJ, Schelske CL, Lohrenz SE. 2000. Spring isothermal mixing in the Great Lakes: evidence of nutrient limitation and nutrient-light interactions in a suboptimal light environment. Can J Fish Aquat Sci 57:1901–10.CrossRefGoogle Scholar
  22. Fee EJ. 1976. The vertical and seasonal distribution of chlorophyll in lakes of the Experimental Lakes Area, northwestern Ontario: implications for primary production estimates. Limnol Oceanogr 21:767–83.CrossRefGoogle Scholar
  23. Ganf GG, Horne AJ. 1975. Diurnal stratification, photosynthesis and nitrogen fixation in a shallow, equatorial lake (Lake George, Uganda). Freshw Biol 5:13–39.CrossRefGoogle Scholar
  24. Hanson PC, Carpenter SR, Kimura N, Wu C, Cornelius SP, Kratz TK. 2008. Evaluation of metabolism models for free-water dissolved oxygen methods in lakes. Limnol Oceanogr Methods 6:454–65.CrossRefGoogle Scholar
  25. Idso SB. 1973. On the concept of lake stability. Limnol Oceanogr 18:681–3.CrossRefGoogle Scholar
  26. Jahne B, Munnich KO, Bosinger R, Dutzi A, Huber W, Libner P. 1987. On the parameters influencing air-water gas-exchange. J Geophys Res 92:1937–49.CrossRefGoogle Scholar
  27. Jørgensen SE. 1979. Handbook of Environmental data and ecological parameters. National society for Ecological Modelling.Google Scholar
  28. Lewis W. 2000. Causes for the high frequency of nitrogen limitation in tropical lakes. Verhandlungen des Internationalen Verein Limnologie 28:210–2013.Google Scholar
  29. Lewis W. 2010. Biogeochemistry of tropical lakes. Verhandlungen des Internationalen Verein Limnologie 30:1595–603.Google Scholar
  30. MacIntyre S, Melack JM. 1982. Meromixis in a equatorial African soda lake. Limnol Oceanogr 27:595–609.CrossRefGoogle Scholar
  31. MacIntyre S, Fram JP, Kushner PJ, Bettez ND, O´Brien WJ, Hobbie JE, Kling GW. 2009. Climate-related variations in mixing dynamics in an Alaskan arctic lake. Limnol Oceanogr 54:2401–17.CrossRefGoogle Scholar
  32. MacIntyre S, Jonsson A, Jansson M, Aberg J, Turney DE, Miller SD. 2010. Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake. Geophys Res Lett 37: n/a–n/a.Google Scholar
  33. MacIntyre S, Melack JM. 1995. Vertical and horizontal transport in lakes: linking littoral, benthic, and pelagic habitats. J North Am Benthol Soc 14:599–615.CrossRefGoogle Scholar
  34. Mackereth FJH, Heron J, Talling JF. 1978. Water analysis and some revised methods for limnologists. Ambleside: Freshwater Biological Association.Google Scholar
  35. Maia-Barbosa PM, Barbosa LG, Brito SL, Garcia F, Barros CFA, Souza MBG, Mello NAST, Guimarães AS, Barbosa FAR. 2010. Limnological changes in Dom Helvécio Lake (South-East Brazil): natural and anthropogenic causes. Braz J Biol 70:795–802.CrossRefPubMedGoogle Scholar
  36. Marengo JA, Ambrizzi T, Rocha RP, Alves LM, Cuadra SV, Valverde MC, Torres RR, Santos DC, Ferraz SET. 2009. Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim Dyn 35:1073–97.CrossRefGoogle Scholar
  37. Marotta H, Duarte CM, Pinho L, Enrich-Prast A. 2010. Rainfall leads to increased pCO2 in Brazilian coastal lakes. Biogeosciences 7:1607–14.CrossRefGoogle Scholar
  38. McNair JN, Gereaux LC, Weinke AD, Sesselmann MR, Kendall ST, Biddanda B. 2013. New methods for estimating components of lake metabolism based on free-water dissolved-oxygen dynamics. Ecol Modell 263:251–63.CrossRefGoogle Scholar
  39. Melack JM. 1979. Photosynthesis and growth of Spirulina platensis (Cyanophyta) in an equatorial lake (lake Simbi, Kenya). Limnol Oceanogr 24:753–60.CrossRefGoogle Scholar
  40. Melack JM. 1982. Photosynthetic activity and respiration in an equatorial African soda lake. Freshw Biol 12:381–400.CrossRefGoogle Scholar
  41. Melack J. 2009. Diel variability and community metabolism in African soda lakes. In: Oren A, Naftz D, Palacios P, Wurtzbaugh WA, Eds. Saline lakes around the world: unique systems with unique values. Natural Resources and Environmental Issues, Vol. XV. Logan: S. J. and Jessie E. Quinney Natural Resources Research Library. p 153–60.Google Scholar
  42. Melack JM, Fisher TR. 1983. Diel oxygen variations and their ecological implication in Amazon floodplain lakes. Arch fur Hydrobiol 98:422–42.Google Scholar
  43. Melack JM, Kilham P. 1974. Photosynthetic rates of phytoplankton in East African alkaline, saline lakes. Limnol Oceanogr 19:743–55.CrossRefGoogle Scholar
  44. Nürnberg GK, Shaw M. 1998. Productivity of clear and humic lakes: nutrients, phytoplankton, bacteria. Hydrobiologia 382:97–112.CrossRefGoogle Scholar
  45. O’Reilly CM, Alin SR, Plisnier PD, Cohen AS, McKee BA. 2003. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424:766–8.CrossRefPubMedGoogle Scholar
  46. Obrador B, Staehr PA, Christensen JPC. 2014. Vertical patterns of metabolism in three contrasting stratified lakes. Limnol Oceanogr 59:1228–40.CrossRefGoogle Scholar
  47. Odum HT. 1956. Primary production in flowing waters. Limnol Oceanogr 1:103–17.Google Scholar
  48. Oliveira FC. 2010. Estimativa da radiação fotossinteticamente ativa para as bacias dos rios Doce, São Mateus e Jequitinhonha. MSc dissertation. Universidade Federal de Viçosa.Google Scholar
  49. Petrucio MM, Barbosa FAR. 2004. Diel variations of phytoplankton and bacterioplankton production rates in four tropical lakes in the middle Rio Doce basin (southeastern Brazil). Hydrobiologia 513:71–6.CrossRefGoogle Scholar
  50. Petrucio MM, Barbosa FAR, Furtado ALS. 2006. Bacterioplankton and phytoplankton production in seven lakes in the Middle Rio Doce basin, south-east Brazil. Limnologica 36:192–203.CrossRefGoogle Scholar
  51. Platt T, Gallegos CL, Harrison WG. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701.Google Scholar
  52. R Development Core Team. 2009. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  53. Read JS, Hamilton DP, Jones ID, Muraoka K, Winslow LA, Kroiss R, Wu CH, Gaiser E. 2011. Derivation of lake mixing and stratification indices from high-resolution lake buoy data. Environ Modell Softw 26:1325–36.CrossRefGoogle Scholar
  54. Reynolds CS. 1989. Physical determinants of phytoplankton succession. In: Sommer U, Ed. Plankton ecology: succession in plankton communities. Berlin: Springer-Verlag. Google Scholar
  55. Sadro S, Melack JM, MacIntyre S. 2011a. Depth-integrated estimates of ecosystem metabolism in a high-elevation lake (Emerald Lake, Sierra Nevada, California). Limnol Oceanogr 56:1764–80.CrossRefGoogle Scholar
  56. Sadro S, Melack JM, MacIntyre S. 2011b. Spatial and temporal variability in the ecosystem metabolism of a high-elevation lake: integrating benthic and pelagic habitats. Ecosystems 14:1123–40.CrossRefGoogle Scholar
  57. Schielzeth H. 2010. Simple means to improve the interpretability of regression coefficient. Methods Ecol Evol 1:103–13.CrossRefGoogle Scholar
  58. Staehr PA, Sand-Jensen K. 2007. Temporal dynamics and regulation of lake metabolism. Limnol Oceanogr 52:108–20.CrossRefGoogle Scholar
  59. Staehr PA, Sand-Jensen K, Raun AL, Nielsson B, Kidmose J. 2010. Drivers of metabolism and net heterotrophy in contrasting lakes. Limnol Oceanogr 55:817–30.CrossRefGoogle Scholar
  60. Staehr PA, Christensen JPA, Batt R, Read J. 2012a. Ecosystem metabolism in a stratified lake. Limnol Oceanogr 57:1317–30.CrossRefGoogle Scholar
  61. Staehr PA, Testa JM, Kemp WM, Cole JJ, Sand-Jensen K, Smith SV. 2012b. The metabolism of aquatic ecosystems: history, applications, and future challenges. Aquat Sci 74:15–29.CrossRefGoogle Scholar
  62. Solomon CT, Bruesewitz DA, Richardson DC, Rose KC, Van de Bogert MC, Hanson PC, Kratz TK, Larget B, Adrian R, Babin BL, Chiu C, Hamilton DP, Gaiser EE, Hendricks S, Istvanovics V, Laas A, O’Donnell DM, Pace ML, Ryder E, Staehr PA, Torgersen T, Vanni MJ, Weathers KC, Zhu G. 2013. Ecosystem respiration: drivers of daily variability and background respiration in lakes around the globe. Limnol Oceanogr 58:849–66.Google Scholar
  63. Soto D. 2002. Oligotrophic patterns in southern Chilean lakes: relevance of nutrients and mixing depth. Rev Chil Hist Nat 75:377–93.CrossRefGoogle Scholar
  64. Talling JF. 1957. Diurnal changes of stratification and photosynthesis in some tropical African waters. Proc R Soc Lond 147:57–83.CrossRefGoogle Scholar
  65. Torremorell A, Llames ME, Pérez GI, Escaray R, Bustingorry J, Zagarese H. 2009. Annual patterns of phytoplankton density and primary production in a large, shallow lake: the central role of the light. Freshw Biol 54:437–49.CrossRefGoogle Scholar
  66. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Wey-henmeyer GA. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–314.CrossRefGoogle Scholar
  67. Vincent WF, Neale PJ, Richerson PJ. 1984. Photoinhibition: algal responses to bright light during diel stratification and mixing in a tropical alpine lake. J Phycol 20:201–11.CrossRefGoogle Scholar
  68. Weiss RF. 1970. Solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res 17:721–35.Google Scholar
  69. Williamson CE, Saros JE, Vincent WF, Smol JP. 2009. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–82.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ludmila Silva Brighenti
    • 1
  • Peter Anton Staehr
    • 2
  • Laura Martins Gagliardi
    • 1
  • Luciana Pena Mello Brandão
    • 1
  • Eliane Côrrea Elias
    • 1
  • Nelson Azevedo Santos Teixeira de Mello
    • 1
  • Francisco Antônio Rodrigues Barbosa
    • 1
  • José Fernandes Bezerra-Neto
    • 1
  1. 1.Limnea, ICBUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Department of BioscienceAarhus UniversityRoskildeDenmark

Personalised recommendations