Ecosystems

, Volume 18, Issue 4, pp 605–628 | Cite as

Buried Wood: A Common Yet Poorly Documented Form of Deadwood

  • M. T. Moroni
  • D. M. Morris
  • C. Shaw
  • J. N. Stokland
  • M. E. Harmon
  • N. J. Fenton
  • K. Merganičová
  • J. Merganič
  • K. Okabe
  • U. Hagemann
Article

Abstract

Buried wood (BW: downed deadwood buried more than 50% by soil, litter, or ground vegetation) is a common but understudied part of forest ecosystems. We reviewed the literature and conducted a meta-analysis of BW that included new data from Australia, Belarus, Canada, Germany, Japan, Norway, Russia, Slovakia, Sweden, the USA, and Wales. Buried wood occurred in a wide range of forest types of natural and anthropogenic origin. In some forests, BW was effectively preserved and volumes of BW exceeded the volume of all other live and deadwood combined. Boreal and oroboreal coniferous forests contained large amounts of BW, whereas hardwood forests appeared to contain little BW due to differences in ground vegetation, wood decomposition pathways, and climatic and edaphic conditions. Coniferous forests growing on paludified ground represent areas with a large capacity to store BW. The largest quantity of BW reported was 935 m3 ha−1 in paludified black spruce (Picea mariana (Mill.)) forests, where typically mature live bole volumes are only 150 m3 ha−1. Buried wood can accumulate over several disturbance cycles (centuries), due to greatly reduced rates of decomposition following burial. As such, BW can represent a large forest C pool that is currently not recognized in forest C accounting using field measurements or models. Failing to account for wood burial can lead to underestimates of ecosystem deadwood stocks as well as misinterpretations of ecosystem dynamics. Buried wood and the burial process should be included in forest measurement and models, particularly for boreal and oroboreal ecosystems, to reduce uncertainty and improve accuracy in forest C accounting. This will require improvements to existing field sampling protocols and collection of long-term data on processes creating BW.

Keywords

coarse woody debris disturbance history carbon paludification boreal bryophytes moss litter 

Notes

Acknowledgments

We thank Glenda Russo for compiling BW data from the Canadian National Forest Inventory. For helping provide observations of BW, we thank Marie-Charlotte Nilsson for Swedish data, Richard Carrick for data from Wales, UK, Merten Minke for data from Belarus, Ekaterina Shorohova for data from Russia, and M. Hasegawa and S. Yamashita for data from Japan. Japanese observations were supported by the Global Environment Research Fund (S9). Data collection in the Forest School Enterprise (FSE) of the Technical University of Zvolen, Slovakia was supported by the Research and Development Operational Programme funded by ERDF under the project Centre of Excellence “Decision support in forest and country”, ITMS 26220120069. The collection of data from the H. J. Andrews Experimental Forest was supported by a grant from the US National Science Foundation (DEB-0823380).

References

  1. Aakala T. 2010. Coarse woody debris in late-successional Picea abies forests in northern Europe: variability in quantities and models of decay class dynamics. For Ecol Manage 260:770–9.CrossRefGoogle Scholar
  2. Ahti T, Hämet-ahti L, Jalas J. 1968. Vegetation zones and their sections in northwestern Europe. Ann Bot Fenn 5:169–211.Google Scholar
  3. Andriesse JP. 1988. Nature and management of tropical peat soils. No. 59. Rome: Food & Agriculture Organization.Google Scholar
  4. Angers VA, Drapeau P, Bergeron Y. 2010. Snag degradation pathways of four North American boreal tree species. For Ecol Manag 259:246–56.CrossRefGoogle Scholar
  5. Asada T, Warner B, Banner A. 2003. Growth of mosses in relation to climate factors in a hypermaritime coastal peatland in British Columbia. Bryologist 106:516–27.CrossRefGoogle Scholar
  6. Arseneault J, Fenton NJ, Bergeron Y. 2012. Effects of variable canopy retention harvest on epixylic bryophytes in boreal black spruce-feathermoss forests of northwestern Québec. Can J For Res 42:1467–76.CrossRefGoogle Scholar
  7. Augusto L, Dupouey J, Ranger J. 2003. Effects of tree species on understory vegetation and environmental conditions in temperate forests. Ann For Sci 60:823–31.CrossRefGoogle Scholar
  8. Benscoter BW, Vitt DH. 2007. Evaluating feathermoss growth: a challenge to traditional methods and implications for the boreal carbon budget. J Ecol 95:151–8.CrossRefGoogle Scholar
  9. Bona KA, Fyles JW, Shaw C, Kurz WA. 2013. Are mosses required to accurately predict upland black spruce forest soil carbon in National-Scale Forest C accounting models? Ecosystems 16:1071–86.CrossRefGoogle Scholar
  10. Brais S, Sadi F, Bergeron Y, Grenier Y. 2005. Coarse woody debris dynamics in a post-fire jack pine chronosequence and its relation with site productivity. For Ecol Manag 220:216–26.CrossRefGoogle Scholar
  11. Bretz Guby NA, Dobbertin M. 1996. Quantitative estimates of coarse woody debris and standing dead trees in selected Swiss forests. Glob Ecol Biogeogr Lett 5:327–41.CrossRefGoogle Scholar
  12. Cavard X, Bergeron Y, Chen HYH, Paré D. 2010. Mixed-species effect on tree aboveground carbon pools in the east-central boreal forests. Can J For Res 40:37–47.CrossRefGoogle Scholar
  13. Chaieb C, Bergeron Y, Fenton N. 2010. Étude comparée de la structure forestière des pessières et des tourbières boisées classifiées denudes humides au 3ème inventaire décennal, dans l’UAF 85-51 et l’UAF 87-63 au Nord de l’Abitibi. Rapport de la Chaire en aménagement forestier durable.Google Scholar
  14. Clark DF, Kneeshaw DD, Burton PJ, Antos JA. 1998. Coarse woody debris in sub-boreal spruce forests of west-central British Columbia. Can J For Res 28:284–90.CrossRefGoogle Scholar
  15. Cornwell WK, Cornelissen JHC, Allison SD, Eggleton P, Preston C, Scarff F, Weedon JT, Wirth C, Zanne AE. 2009. Plant traits and wood fates across the globe-rotted, burned, or consumed? Glob Chang Biol 15:2431–49.CrossRefGoogle Scholar
  16. Debeljak M. 2006. Coarse woody debris in virgin and managed forests. Ecol Ind 6:733–42.CrossRefGoogle Scholar
  17. Deckers J, Spaargaren OC, Nachtergaele FO, Eds. 1998. World reference base for soil resources. International Society of Soil Science Working Group RB, 1st edn., vol. 1 and 2. Acco: KULeuven Academic Press.Google Scholar
  18. Dioumaeva I, Trumbore S, Schuur EAG, Goulden ML, Litvak M, Hirsch AI. 2002. Decomposition of peat from upland boreal forest: temperature dependence and sources of respired carbon. J Geophys Res 108(D3):8222.CrossRefGoogle Scholar
  19. Drobyshev I, Goebel PC, Bergeron Y, Corace RGIII. 2012. Detecting changes in climate forcing on the fire regime of a North American mixed-pine forest: a case study of Seney National Wildlife Refuge, Upper Michigan. Dendrochronologia 30:137–45.CrossRefGoogle Scholar
  20. Dynesius M, Gibb H, Hjältén J. 2010. Surface covering of downed logs: drivers of a neglected process in dead-wood ecology. PLoS ONE 5:e13237.CrossRefPubMedCentralPubMedGoogle Scholar
  21. Eckstein J, Leuschner HH, Bauerochse A, Sass-Klaassen U. 2009. Subfossil bog-pine horizons document climate and ecosystem changes during the Mid-Holocene. Dendrochronologia 27:129–46.CrossRefGoogle Scholar
  22. Ecological Stratification Working Group (ESWG). 1995. A National Ecological Framework for Canada. Agriculture and Agrifood Canada, Research Branch, Center for Land and Biological Resources Research and Environment Canada, State of the Environment, Ecozone Analysis Branch, Ottawa/Hull. Report and National Map at 1: 7 500 00 scale.Google Scholar
  23. Ecoregions Working Group. 1989. Ecoclimatic regions of Canada: first approximation. Report and national map at 1:7,500,000 scale. Ecological Land Classification Series, No. 23. Ottawa (ON): Ecoregions Working Group, Canada Committee on Ecological Land Classification, Sustainable Development Branch, Canadian Wildlife Service, Conservation Protection, Environment Canada.Google Scholar
  24. Eden WJ. 1967. Buried soil profile under apron of an earth flow. Geol Soc Am Bull 78:1183–4.CrossRefGoogle Scholar
  25. Edvardsson J, Linderson H, Rundgren M, Hammarlund D. 2012. Holocene peatland development and hydrological variability inferred from bog-pine dendrochronology and peat stratigraphy—a case study from southern Sweden. J Quat Sci 27:553–63.CrossRefGoogle Scholar
  26. Elumeeva TG, Soudzilovskaia NA, During HJ, Cornelissen JHC. 2011. The importance of colony structure versus shoot morphology for the water balance of 22 subarctic bryophyte species. J Veg Sci 22:152–64.CrossRefGoogle Scholar
  27. FAO. 2000. Global Forest Resources Assessment 2000. Rome: Italy.Google Scholar
  28. Fasth B, Harmon ME, Sexton J, White PS. 2011. Decomposition of fine woody debris in a deciduous forest in North Carolina. J Torrey Bot Soc 38:192–206.CrossRefGoogle Scholar
  29. Fenton NJ, Bergeron Y. 2006. Facilitative succession in a boreal bryophyte community driven by changes in available moisture and light. J Veg Sci 17:65–76.CrossRefGoogle Scholar
  30. Fenton N, Lecomte N, Légaré S, Bergeron Y. 2005. Paludification in black spruce (Picea mariana) forests of eastern Canada: potential factors and management implications. For Ecol Manage 213:151–9.CrossRefGoogle Scholar
  31. Fenton NJ, Légaré S, Bergeron Y, Paré D. 2006. Soil oxygen within boreal forests across an age gradient. Can J Soil Sci 86:1–9.CrossRefGoogle Scholar
  32. Foster DR. 1985. Vegetation development following fire in Picea mariana (black spruce)–Pleurozium forests of south-eastern Labrador, Canada. J Ecol 73:517–34.CrossRefGoogle Scholar
  33. Fox CA, Tarnocai C. 2011. Organic soils of Canada: Part 2. Upland organic soils. Can J Soil Sci 91:823–42.CrossRefGoogle Scholar
  34. Fridman J, Walheim M. 2000. Amount, structure, and dynamics of dead-wood on managed forestland in Sweden. For Ecol Manage 131:23–36.CrossRefGoogle Scholar
  35. Glebov F, Korzukhin M. 1992. Transitions between boreal forest and wetland. In: Shugart H, Leemans R, Bonan G, Eds. A systems analysis of the global boreal forest. Cambridge: Cambridge University Press. p 241–66.CrossRefGoogle Scholar
  36. Green RN, Trowbridge RL, Klinka K. 1993. Towards a taxonomic classification of humus forms. Forest Sci Monogr 29:1–49.Google Scholar
  37. Grosenbaugh LR. 1948. Improved cubic volume computation. J Forest 46:299–301.Google Scholar
  38. Hagemann U, Moroni MT, Makeschin F. 2009. Deadwood abundance in Labrador high-boreal black spruce forests. Can J For Res 39:131–42.CrossRefGoogle Scholar
  39. Hagemann U, Moroni MT, Gleißner J, Makeschin F. 2010a. Accumulation and preservation of dead-wood upon burial by bryophytes. Ecosystems 13:600–11.CrossRefGoogle Scholar
  40. Hagemann U, Moroni MT, Shaw CH, Kurz WA, Makeschin F. 2010b. Comparing measured and modelled forest carbon stocks in high-boreal forests of harvest and natural disturbance origin in Labrador, Canada. Ecol Model 221:825–39.CrossRefGoogle Scholar
  41. Hall JE, Kirby KJ, Whitbread AM. 2001. National Vegetation Classification: field guide to woodland. Joint Nature Conservation Committee. http://jncc.defra.gov.uk/PDF/fieldguidetowoodland.pdf
  42. Hajek T, Ballance S, Limpens J, Zijlstra M, Verhoeven JTA. 2011. Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed 15 decomposition in vitro. Biogeochemistry 103:45–57.CrossRefGoogle Scholar
  43. Hämet-Ahti L, Ahti T, Koponen T. 1974. A scheme of vegetation zones for Japan and adjacent regions. Ann Bot Fenn 11:59–88.Google Scholar
  44. Harden JW, Trumbore SE, Stocks BJ, Hirsch A, Gower ST, O’neill KP, Kasischke ES. 2000. The role of fire in the boreal carbon budget. Glob Change Biol 6(S1):174–84.CrossRefGoogle Scholar
  45. Harmon ME, Hua C. 1991. Coarse woody debris dynamics in two old-growth ecosystems. Bioscience 41:604–10.CrossRefGoogle Scholar
  46. Harmon ME, Bond-Lamberty B, Tang J, Vargas R. 2011. Heterotrophic respiration in disturbed forests: a review with examples from North America. J Geophys Res 116:G00K04.Google Scholar
  47. Harvey AE, Larsen M, Jurgensen MF. 1976. Distribution of ectomycorrhizae in a mature Douglas-fir/larch forest soil in western Montana. For Sci 22:393–8.Google Scholar
  48. Harvey AE, Larsen M, Jurgensen MF. 1981. Rate of woody residue incorporation in to northern Rocky Mountain forest soils. USDA For. Serv. Res. Pap. INT-282.Google Scholar
  49. Heinselman M. 1981. Fire succession in the conifer forests of northern North America. In: West D, Shugart H, Botkin D, Eds. Forest succession: concepts and application. New York: Springer-Verlag, p 375–405.Google Scholar
  50. Hicks WT, Harmon ME. 2002. Diffusion and seasonal dynamics of O2 in woody debris from the Pacific Northwest, USA. Plant Soil 243:67–79.CrossRefGoogle Scholar
  51. Hobbie SE. 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–22.CrossRefGoogle Scholar
  52. Holeksa J. 2001. Coarse woody debris in a Carpathian subalpine spruce forest. Forstwissenschaftliches Centralblatt 120:256–70.CrossRefGoogle Scholar
  53. Hunt SL, Gordon AM, Morris DM. 2010. Carbon stocks in managed conifer forests in northern Ontario, Canada. Silva Fennica 44:563–82.CrossRefGoogle Scholar
  54. Jomura M, Kominami Y, Dannoura M, Kanazawa Y. 2008. Spatial variation in respiration from coarse woody debris in a temperate secondary broad-leaved forest. For Ecol Manage 255:149–55.CrossRefGoogle Scholar
  55. Jomura M, Kominami Y, Tamai K, Miyama T, Goto Y, Dannoura M, Kanazawa Y. 2007. The carbon budget of coarse woody debris in a temperate broad-leaved secondary forest in Japan. Tellus B 59:211–22.CrossRefGoogle Scholar
  56. Keenan RJ, Prescott CE, Kimmins JP. 1993. Mass and nutrient content of woody debris and forest floor in western red cedar and western hemlock forests on northern Vancouver Island. Can J For Res 23:1052–9.CrossRefGoogle Scholar
  57. Kemball KJ, Wang GG, Dang QL. 2005. Response of understory plant community of boreal mixedwood stands to fire, logging, and spruce budworm outbreak. Botany 83:1550–60.Google Scholar
  58. Kershaw M, Wiltshire R, Hollstedt C. 1994. Critical silvics of feathermoss as related to vegetation management. Ontario Ministry of Natural Resources, Northwest Region Science and Technology Unit, Technical Note 29Google Scholar
  59. Kira K, Hirata K, Baba H. 1998. Utilizing forest in the Island of Yakushima (I): historical fluctuations in the management and utilization of Yakusugi (Cryptomeria japonica). Bull Fac Agri Kagoshima Univ 48:31–9.Google Scholar
  60. Klinka K, Green RN, Trowbridge RL, Lowe LE. 1981. Taxonomic classification of humus forms in ecosystems of British Columbia: first approximation. British Columbia, Ministry of Forests. Land Management Report Number 8.Google Scholar
  61. Korpel’ Š. 1995. Die Urwälder der Westkarpaten. Stuttgart: G. Fischer.Google Scholar
  62. Kurz WA, Dymond CC, White TM, Stinson G, Shaw CH, Rampley GJ, Smyth C, Simpson BN, Neilson ET, Trofymow JA, Metsaranta J, Apps MJ. 2009. CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol Model 220:480–504.CrossRefGoogle Scholar
  63. Kushnevskaya H, Mirin D, Shorohova E. 2007. Patterns of epixylic vegetation on spruce logs in late-successional boreal forests. For Ecol Manage 250:25–33.CrossRefGoogle Scholar
  64. Lambert RL, Lang GE, Reiners WA. 1980. Loss of mass and chemical change in decaying boles of a subalpine balsam fir forest. Ecology 61:1460–73.CrossRefGoogle Scholar
  65. Lang GE, Cronan CS, Reiners WA. 1981. Organic matter and major elements of the forest floors and soils in subalpine balsam fir forests. Can J For Res 11:388–99.CrossRefGoogle Scholar
  66. Lang SI, Cornelissen JHC, Klahn T, van Logtestijn RSP, Broekman R, Schweikert W, Aerts R. 2009. An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. J Ecol 97:886–900.CrossRefGoogle Scholar
  67. Lecomte N, Simard M, Fenton N, Bergeron Y. 2006. Fire severity and long-term ecosystem biomass dynamics in coniferous boreal forest of eastern Canada. Ecosystems 9:1215–30.CrossRefGoogle Scholar
  68. Lefort P, Harvey B, Parton JG, Smith GKM. 2002. Synthesizing knowledge of the Claybelt to promote sustainable forest management. Forestry Chronicle 78:665–71.CrossRefGoogle Scholar
  69. Little SN, Ohmann JL. 1988. Estimating nitrogen lost from forest floor during prescribed fires in Douglas-fir/western hemlock clearcuts. Forest Science 34:152–64.Google Scholar
  70. Little S. 1959. Silvicultural characteristics of Atlantic White-Cedar (Chamaecyparis thyloides). Northeastern Forest Experiment Station, USDA Forest Service. Upper Darby, PA. Station Paper No. 118Google Scholar
  71. Manies K, Harden J, Bond-Lamberty B, O’Neill K. 2005. Woody debris along an upland chronosequence in boreal Manitoba and its impact on long-term carbon storage. Can J For Res 35:472–82.CrossRefGoogle Scholar
  72. Marshall PL, Davis G, LeMay VM. 2000. Using line intersect sampling for coarse woody debris. British Columbia Ministry of Forests, Vancouver Forest Region, Nanaimo, British Columbia. Technical Report TR-003. http://www.for.gov.bc.ca/rco/research/cwd/tr003.pdf.
  73. McFee WW, Stone EL. 1966. The persistence of decaying wood in the humus layers of northern forests. Soil Sci Soc Am J 30:513–16.CrossRefGoogle Scholar
  74. MCPFE. 2007. State of Europés forests 2007. The MCPFE report on sustainable forest management in Europe. Liaison Unit Warsaw. http://www.foresteurope.org/documentos/state_of_europes_forests_2007.pdf. Accessed May 26, 2014
  75. McRae D, Duchesne L, Freedman B, Lynham T, Woodley S. 2001. Comparisons between wildfire and forest harvesting and their implications in forest management. Environ Rev 9:223–60.CrossRefGoogle Scholar
  76. Merganič J, Vorčák J, Merganičová K, Ďurský J, Miková A, Škvarenina J, Tuček J, Minďáš J. 2003. Diversity monitoring in mountain forests of Eastern Orava. EFRA, Tvrdošín. http://www.forim.sk/index_soubory/Merganic_Vorcak_Merganicova_Dursky_Mikova_Skvarenina_Tucek_Mindas_2003.pdf. Accessed April 26, 2013.
  77. Merganič J, Quednau HD, Šmelko Š. 2004. Relations between selected geomorphology features and tree species diversity of forest ecosystems and interpolation on a regional level. Eur J Forest Res 123:75–85.CrossRefGoogle Scholar
  78. Messier C, Kimmins JP. 1992. Growth of western red cedar seedlings in relation to microtopography, forest floor nutrient status, and fireweed and salal on clear-cut sites in coastal British Columbia. Can J For Res 22:273–8.CrossRefGoogle Scholar
  79. Ministère des Ressources Naturelles du Québec. 1997. Normes d’inventaire forestier. Les placettes échantillons permanentes édition provisoire. Direction de la gestion des stocks forestiers. Service des inventaires forestiers. ftp://www.ftp.mrn.gouv.qc.ca/Public/Bibliointer/Mono/2013/12/1143605.pdf. Accessed May 23, 2014.
  80. Miyamoto A, Sano M. 2008. The influence of forest management on landscape structure in the cool-temperate forest region of central Japan. Landsc Urban Plan 86:248–56.CrossRefGoogle Scholar
  81. Moroni MT. 2006. Disturbance history affects dead-wood abundance in Newfoundland boreal forests. Can J For Res 36:3194–208.CrossRefGoogle Scholar
  82. Moroni MT, Hagemann U, Beilmann D. 2010. Dead-wood is buried and preserved in a Labrador boreal forest. Ecosystems 13:452–8.CrossRefGoogle Scholar
  83. Moroni MT, Ryan DAJ. 2010. Dead-wood abundance in recently harvested and old Nova Scotia tolerant hardwood forests. Forestry 83:219–27.CrossRefGoogle Scholar
  84. Moroni MT, Carter PQ, Ryan DAJ. 2009. Harvesting and slash piling affects surface respiration, soil temperature, and soil moisture regimes in Newfoundland boreal forests. Can J Soil Sci 89:343–55.CrossRefGoogle Scholar
  85. Naesset E. 1999. Decomposition rate constants of Picea abies logs in southeastern Norway. Can J For Res 29:372–81.CrossRefGoogle Scholar
  86. Natural Resources Canada. 2004a. Canada’s National Inventory: Design overview. Version 3.2. https://nfi.nfis.org/documentation/general/Design_overview_v3.2.pdf. Accessed June 1, 2013.
  87. Natural Resources Canada. 2004b. Canada’s National Inventory: ground sampling guidelines. Version 4.1. https://nfi.nfis.org/documentation/ground_plot/Gp_guidelines_v4.1.pdf. Accessed June 1, 2013.
  88. Natural Resources Canada. 2008. Canada’s National Forest Inventory: Ground Sampling Guidelines. Version 5.0. https://nfi.nfis.org/documentation/ground_plot/Gp_guidelines_v5.0.pdf. Accessed May 31, 2013
  89. Natural Resources Canada. 2011. Canada’s National Forest Inventory. National Standard for ground plots, Data dictionary. Version 5.1.1. https://nfi.nfis.org/documentation/ground_plot/Gp_data_dictionary_v5.1.1.pdf. Accessed 31 May, 2013
  90. Natural Resources Canada. 2013. Canada’s National Forest Inventory: Online database. http://nfi.nfis.org/. Accessed April 8, 2014
  91. Nilsson SGM, Niklasson J, Hedin G, Aronsson JM, Gutowski P, Linder H, Ljungberg G, Mikusinski-Ranius T. 2002. Densities of large living and deadtrees in old-growth temperate and boreal forests. For Ecol Manage 161:189–204.CrossRefGoogle Scholar
  92. Oechel WC, van Cleve K. 1986. The role of bryophytes in nutrient cycling in the taiga. In: van Cleve K, Chapin III FS, Flanagan PW, Viereck LA, Dyrness CT, Eds. Forest ecosystems in the Alaskan Taiga. New York: Springer. p 121–137.Google Scholar
  93. Rheault H, Bélanger L, Grondin P, Ouimet R, Hébert C, Dussault C. 2009. Stand composition and structure as indicators of epixylic diversity in old-growth boreal forests. Ecoscience 16:183–96.CrossRefGoogle Scholar
  94. Saetre P, Saetre LS, Brandtberg PO, Lundkvist H, Bengtsson J. 1997. Ground vegetation composition and heterogeneity in pure Norway spruce and mixed Norway spruce–birch stands. Can J For Res 27:2034–42.Google Scholar
  95. Saucier JP, Robitaille R, Grondin P, Bergeron JF, Gosselin J. 2011. Les régions écologiques du Québec méridional (4 version). Carte à l’échelle de 1 / 1 250 000. Ministère des Ressources naturelles et de la Faune du Québec.Google Scholar
  96. Schmidt O. 2006. Wood and tree fungi: biology, damage, protection and use. Heidelberg, Germany: Springer-Verlag.Google Scholar
  97. Schmalholz M, Hylander K, Frego K. 2011. Bryophyte species richness and composition in young forests regenerated after clear-cut logging versus after wildfire and spruce budworm outbreak. Biodivers Conserv 20:2575–96.CrossRefGoogle Scholar
  98. Shaw CH, Boyle JR, Omule AY. 2008. Estimating forest soil carbon and nitrogen stocks with double sampling for stratification. Soil Sci Soc Am J 72:1611–20.CrossRefGoogle Scholar
  99. Shetler G, Turetsky MR, Kane E, Kasischke E. 2008. Sphagnum mosses limit total carbon consumption during fire in Alaskan black spruce forests. Can J For Res 38:2328–36.CrossRefGoogle Scholar
  100. Soil Classification Working Group (SCWG). 1998. The Canadian system of soil classification. 3rd edn. Agriculture and Agri-Food Canada, Ottawa, ON. Publication Number 1646.Google Scholar
  101. Siitonen J. 2001. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol Bull 49:11–41.Google Scholar
  102. Simard M, Lecomte N, Bergeron Y, Bernier PY, Paré D. 2007. Forest productivity decline caused by successional paludification of boreal soils. Ecol Appl 17:1619–37.CrossRefPubMedGoogle Scholar
  103. Simard M, Bernier PY, Bergeron Y, Paré D, Guérine L. 2009. Paludification dynamics in the boreal forest of the James Bay Lowlands: effect of time since fire and topography. Can J For Res 39:546–52.CrossRefGoogle Scholar
  104. Smithwick EAH, Harmon ME, Remillard SM, Acker SA, Franklin JF. 2002. Potential upper bounds of carbon stores in forests of the Pacific Northwest. Ecol Appl 12:1303–17.CrossRefGoogle Scholar
  105. Soil Survey Staff. 1992. Keys to soil taxonomy. 5th edition. SMMS Technical Monograph No. 19, Blacksburg, Virginia: Pocahontas Press, Inc.Google Scholar
  106. Startsev N, Lieffers VJ, Landhäusser SM. 2008. Effects of leaf litter on the growth of boreal feather mosses: implication for forest floor development. J Veg Sci 19:253–60.CrossRefGoogle Scholar
  107. Stokland JN. 2001. The coarse woody debris profile: an archive of the recent forest history and an important biodiversity indicator. Ecol Bull 49:71–83.Google Scholar
  108. Stokland JN, Eriksen R, Tomter SM, Korhonen K, Tomppo E, Rajaniemi S, Söderberg U, Toet H, Riis-Nielsen T. 2003. Forest biodiversity indicators in the Nordic countries—status based on national forest inventories. TemaNord: Nordic Council of Ministers. 514Google Scholar
  109. Stokland JN. 2012. Wood decomposition. In: Stokland JN, Siitonen J, Jonsson BG, Eds. Biodiversity in dead-wood. London: Cambridge University Press. p 10–28.Google Scholar
  110. Stocks BJ, Mason JA, Todd JB, Bosch EM, Wotton BM, Amiro BD, Flannigan MD, Hirsh A, Logan KA, Martell DL, Skinner WR. 2003. Large forest fires in Canada, 1959–1997. J Geophys Res 108:1–12.Google Scholar
  111. Strukelj M, Brais S, Quideau SA, Angers VA, Kebli H, Drapeau P, Oh SW. 2013. Chemical transformations in downed logs and snags of mixed boreal species during decomposition. Can J For Res 43:785–98.CrossRefGoogle Scholar
  112. Swanson RV, Flanagan LB. 2001. Environmental regulation of carbon dioxide exchange at the forest floor in a boreal black spruce ecosystem. Agric For Meteorol 108:165–81.CrossRefGoogle Scholar
  113. Tamm CO. 1953. Growth, yield and nutrition in carpets of a forest moss (Hylocomium splendens). Meddelanden fran Statens Skogsforskningsinstitut 43:1–140.Google Scholar
  114. Tyrrell LE, Crow TR. 1994. Dynamics of dead-wood in old-growth hemlock–hardwood forests of northern Wisconsin and northern Michigan. Can J For Res 24:1672–83.CrossRefGoogle Scholar
  115. Warren MW, Kauffman JB, Murdiyarso D, Anshari G, Hergoualc’h K, Kurnianto S, Purbopuspito J, Gusmayanti E, Afifudin M, Rahajoe J, Alhamd L, Limin S, Iswandi A. 2012. A cost-efficient method to assess carbon stocks in tropical peat soil. Biogeosciences 9:4477–85.CrossRefGoogle Scholar
  116. Weir JMH, Johnson EA, Miyanshi K. 2000. Fire frequency and the spatial age mosaic of the mixed-wood boreal forest of western Canada. Ecol Appl 10:1162–77.CrossRefGoogle Scholar
  117. Wang C, Bond-Lamberty B, Gower ST. 2003. Carbon distribution of a well- and poorly-drained black spruce fire chronosequence. Glob Change Biol 9:1066–79.CrossRefGoogle Scholar
  118. Weedon JT, Cornwell WK, Cornelissen JHC, Zanne AE, Wirth C, Coomes DA. 2009. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45–56.CrossRefPubMedGoogle Scholar
  119. Wellbrock N, Aydin CT, Block J, Bussian B, Deckert M, Diekmann O, Evers J, Fetzer KD, Gauer J, Gehrmann J, Kölling C, König N, Liesebach M, Martin J, Meiwes KJ, Milbert G, Raben G, Riek W, Schäffer W, Schwerhoff J, Ullrich T, Utermann J, Volz HA, Weigel A, Wolff B. 2006. Bodenzustandserhebung im Wald (BZE II) Arbeitsanleitung für die Außenaufnahmen. Berlin, Germany: Hrsg. BMELV.Google Scholar
  120. Woodall CW, Rondeaux J, Verkerk PJ, Ståhl G. 2009. Estimating dead-wood during national forest inventories: a review of inventory methodologies and suggestions for harmonization. Environ Manag 44:624–31.CrossRefGoogle Scholar
  121. Yamashita S, Hattori T, Tanaka H. 2012. Changes in community structure of wood-inhabiting aphyllophoraceous fungi after clear-cutting in a cool temperate zone of Japan: planted conifer forest versus broad-leaved secondary forest. For Ecol Manag 283:27–34.CrossRefGoogle Scholar
  122. Zabel RA, Morrell JJ. 1992. Wood microbiology: decay and its prevention. San Diego, CA: Academic Press Inc.Google Scholar
  123. Zielonka T, Niklasson M. 2001. Dynamics of dead-wood and regeneration pattern in natural spruce forest in the Tatra Mountains, Poland. Ecol Bull 49:159–63.Google Scholar
  124. Zeng N. 2008. Carbon sequestration via wood burial. Carbon Balanc Manage 3:1–12.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. T. Moroni
    • 1
  • D. M. Morris
    • 2
  • C. Shaw
    • 3
  • J. N. Stokland
    • 4
  • M. E. Harmon
    • 5
  • N. J. Fenton
    • 6
  • K. Merganičová
    • 7
    • 8
  • J. Merganič
    • 7
    • 8
  • K. Okabe
    • 9
  • U. Hagemann
    • 10
  1. 1.Tolmans HillAustralia
  2. 2.Centre for Northern Forest Ecosystem ResearchThunder BayCanada
  3. 3.Canadian Forest ServiceNorthern Forestry CentreEdmontonCanada
  4. 4.Norwegian Forest and Landscape InstituteÅsNorway
  5. 5.Department of Forest Ecosystems and Society, College of ForestryOregon State UniversityCorvallisUSA
  6. 6.Forest Research InstituteUniversité du Québec en Abitibi-TémiscamingueRouyn-NorandaCanada
  7. 7.Department of Forest Management and Geodesy, Faculty of ForestryTechnical University ZvolenZvolenSlovakia
  8. 8.Faculty of Forestry and Wood Sciences, Department of Forest ManagementCzech University of Life SciencesPraha 6 - SuchdolCzech Republic
  9. 9.Forestry and Forest Products Research InstituteTsukubaJapan
  10. 10.Institute of Landscape BiogeochemistryLeibniz Centre for Agricultural Landscape Research (ZALF) e.V.MünchebergGermany

Personalised recommendations