, Volume 18, Issue 3, pp 481–492 | Cite as

Woody Plant-Cover Dynamics in Argentine Savannas from the 1880s to 2000s: The Interplay of Encroachment and Agriculture Conversion at Varying Scales

  • Mariano González-Roglich
  • Jennifer J. Swenson
  • Diego Villarreal
  • Esteban G. Jobbágy
  • Robert B. Jackson


Woody plant-cover dynamics can alter the provisioning of ecosystem services that humans rely on. However, our understanding of such dynamics today is often limited by the availability of reliable and detailed land-cover information in the past, before the onset of remote sensing technologies. In this study, we carefully extracted information from historical maps of the Caldenal savannas of central Argentina in the 1880s to generate a woody cover map that we compared to a 2000s dataset. Over about the last 120 years, woody cover increased across approximately 12,200 km2 (14.2% of the area). During the same period, about 5,000 km2 of the original woody area was converted to croplands and around 7,000 km2 to pastures, about the same total land area as was affected by encroachment. A smaller area, fine-scale analysis between the 1960s and the 2000s revealed that tree cover increased overall by 27%, shifting from open savannas to a mosaic of dense woodlands along with additional agricultural clearings. Statistical models indicate that woody cover dynamics in this region were affected by a combination of environmental and human factors. Over about the last 120 years, increases in woody plant cover have stored significant amounts of C (95.9 TgC), but not enough to compensate for losses from conversions to croplands and pastures (166.7 TgC), generating a regional net loss of 70.9 TgC. C losses could be even larger in the future if, as predicted, energy crops such as switchgrass, would trigger a new land-cover change phase in this region.


Prosopis caldenia caldén caldenal Pampa semiarid historical maps deforestation agriculture frontier 



We would like to thank R. Gardón, F. González Mazzoni, V. Sirotiuk, and J. Uribe Echevarría for digitizing the 1880s data set. M. Cock, M. Betelu, and M. G. Castro assisted during data collection. The manuscript was greatly improved by the careful evaluation by two anonymous reviewers. The Dirección General de Catastro and Dirección de Recursos Naturales de la Provincia de La Pampa provided access to the maps and aerial photos. INPE provided CBERS images. Funding was provided by NASA Earth and Space Science Fellowship (NNX10AO68H), NSF DDRI Grant (1130996), Duke CLACS Tinker Field Research Grant, Duke CLACS Mellon Graduate Student Research Travel Grant, and a research grant from the Ministerio de la Producción del Gobierno de la Provincia de La Pampa (Argentina) through the Ley Nacional 26.331 de Presupuestos mínimos de conservación de los bosques nativos.


  1. Alonso AF. 2009. En el pais de los caldenes: Incorporación productiva y expansión económica en La Pampa. Huellas 13:204–36.Google Scholar
  2. Andersen MD, Baker WL. 2005. Reconstructing landscape-scale tree invasion using survey notes in the Medicine Bow Mountains, Wyoming, USA. Landsc Ecol 21:243–58.CrossRefGoogle Scholar
  3. Antrop M. 2005. Why landscapes of the past are important for the future. Landsc Urban Plan 70:21–34.CrossRefGoogle Scholar
  4. Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT. 2004. Grazing systems, ecosystem responses, and global change. Annu Rev Environ Resour 29:261–99.CrossRefGoogle Scholar
  5. Bailey RG. 1996. Ecosystem geography. New York: Springer.CrossRefGoogle Scholar
  6. Baldi G, Paruelo JM. 2008. Land-use and land cover dynamics in South American temperate grasslands. Ecol Soc 13(2):6.Google Scholar
  7. Ballantyne AP, Alden CB, Miller JB, Tans PP, White JWC. 2012. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488:70.CrossRefPubMedGoogle Scholar
  8. Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Roedenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D. 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–8.CrossRefPubMedGoogle Scholar
  9. Beltran-Przekurat A, Pielke RA, Peters DPC, Snyder KA, Rango A. 2008. Modeling the effects of historical vegetation change on near-surface atmosphere in the northern Chihuahuan Desert. J Arid Environ 72:1897–910.CrossRefGoogle Scholar
  10. Bender O, Boehmer HJ, Jens D, Schumacher KP. 2005. Analysis of land-use change in a sector of Upper Franconia (Bavaria, Germany) since 1850 using land register records. Landsc Ecol 20:149–63.CrossRefGoogle Scholar
  11. Blaum N, Rossmanith E, Jeltsch F. 2007. Land use affects rodent communities in Kalahari savannah rangelands. Afr J Ecol 45:189–95.CrossRefGoogle Scholar
  12. Browning DM, Archer SR, Asner GP, McClaran MP, Wessman CA. 2008. Woody plants in grasslands: Post-encroachment stand dynamics. Ecol Appl 18:928–44.CrossRefPubMedGoogle Scholar
  13. Burnham KP, Anderson DR. 2002. Model selection and multimodel inference, A practical information theoretic approach. New York: Springer-Verlag.Google Scholar
  14. Cabrera AL. 1994. Enciclopedia Argentina de agricultura y jardinería, Tomo II, Fascículo 1: Regiones fitogeográficas Argentinas. Buenos Aires: Acme.Google Scholar
  15. Cano E, Fernández B, Montes A. 1980. Inventario integrado de los recursos naturales de la provincia de La Pampa. Buenos Aires: UNLPam, Gobierno de La Pampa e INTA.Google Scholar
  16. CIESIN. 2011. Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Settlement Points. NY: Palisades.Google Scholar
  17. del Hoyo LV, Martin Isabel MP, Martinez Vega FJ. 2011. Logistic regression models for human-caused wildfire risk estimation: analysing the effect of the spatial accuracy in fire occurrence data. Eur J For Res 130:983–96.CrossRefGoogle Scholar
  18. Diogo V, van der Hilst F, van Eijck J, Verstegen JA, Hilbert J, Carballo S, Volante J, Faaij A. 2014. Combining empirical and theory-based land-use modelling approaches to assess economic potential of biofuel production avoiding iLUC: Argentina as a case study. Renew Sustain Energy Rev 34:208–24.CrossRefGoogle Scholar
  19. Don A, Schumacher J, Freibauer A. 2011. Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob Change Biol 17:1658–70.CrossRefGoogle Scholar
  20. DPV. 2012. Mapa actualizado 2012 de la red caminera de la provincia de La Pampa.Google Scholar
  21. Dussart E, Lerner P, Peinetti R. 1998. Long term dynamics of 2 populations of Prosopis caldenia Burkart. J Range Manag 51:685–91.CrossRefGoogle Scholar
  22. Eldridge DJ, Bowker MA, Maestre FT, Roger E, Reynolds JF, Whitford WG. 2011. Impacts of shrub encroachment on ecosystem structure and functioning: towards a global synthesis. Ecol Lett 14:709–22.CrossRefPubMedCentralPubMedGoogle Scholar
  23. Fan Y, Li H, Miguez-Macho G. 2013. Global patterns of groundwater table depth. Science 339:940–3.CrossRefPubMedGoogle Scholar
  24. Fawcett T. 2006. An introduction to ROC analysis. Pattern Recogn Lett 27:861–74.CrossRefGoogle Scholar
  25. Fielding AH, Bell JF. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49.CrossRefGoogle Scholar
  26. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK. 2005. Global consequences of land use. Science 309:570–4.CrossRefPubMedGoogle Scholar
  27. González-Roglich M, Swenson JJ, Jobbagy E, Jackson RB. 2014. Shifting carbon pools along a plant cover gradient in woody encroached savannas of central Argentina. For Ecol and Manag 331:71–8.CrossRefGoogle Scholar
  28. González-Roglich M, Villarreal D, Castro MG. 2012. Evaluación de la efectividad de la Reserva Parque Luro como herramienta de conservación del Caldenal pampeano: cambios en la cobertura vegetal a nivel de paisaje entre 1960 y 2004. Ecol Aust 22:11–21.Google Scholar
  29. Gordijn PJ, Rice E, Ward D. 2013. The effects of fire on woody plant encroachment are exacerbated by succession of trees of decreased palatability. S Afr J Bot 86:142.CrossRefGoogle Scholar
  30. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG. 2011. Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711.CrossRefPubMedGoogle Scholar
  31. Gutierrez D, Harcourt J, Diez SB, Illan JG, Wilson RJ. 2013. Models of presence-absence estimate abundance as well as (or even better than) models of abundance: the case of the butterfly Parnassius apollo. Landsc Ecol 28:401–13.CrossRefGoogle Scholar
  32. Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M. 2007. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci USA 104:12942–5.CrossRefPubMedCentralPubMedGoogle Scholar
  33. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–78.CrossRefGoogle Scholar
  34. Hosmer DW, Lemeshow S, Sturdivant RX. 2013. Applied logistic regression. Hoboken: Wiley.Google Scholar
  35. Houghton RA. 2013. The emissions of carbon from deforestation and degradation in the tropics: past trends and future potential. Carbon Manag 4:539–46.CrossRefGoogle Scholar
  36. IGN. 2013. SIG250: Base cartografica digital de la Republica Argentina. Buenos Aires: Instituto Geografico Nacional.Google Scholar
  37. Jarvis A, Reuter HI, Nelson A, Guevara E. 2008. Hole filled SRTM for the globe version 4, available from CGIAR-CSI SRTM 90m Database.Google Scholar
  38. Jenness J. 2006. Topographic Position and Landforms Analysis.Google Scholar
  39. Kim JH, Jackson RB. 2011. A global analysis of groundwater recharge for vegetation, climate and soils. Vadose Zone J. doi: 10.2136/vzj2011.Google Scholar
  40. Lerner PD. 2004. El Caldenar: Dinámica de poblaciones de caldén y procesos de expansión de leñosas en pastizales. Arturi MF, Frangi JL, Goya JF editors. Ecologia y manejo de bosques de Argentina.Google Scholar
  41. Li RQ, Dong M, Cui JY, Zhang LL, Cui QG, He WM. 2007. Quantification of the impact of land-use changes on ecosystem services: A case study in Pingbian County, China. Environ Monit Assess 128:503–10.CrossRefPubMedGoogle Scholar
  42. Liu F, Archer SR, Gelwick F, Bai E, Boutton TW, Wu XB. 2013. Woody plant encroachment into grasslands: spatial patterns of functional group distribution and community development. Plos One 8(12):e84364.CrossRefPubMedCentralPubMedGoogle Scholar
  43. Lluch AM. 2008. La economía desde la ocupación capitalista a la crisis del ´30 y los años posteriores. Lluch AM, Salomon Tarquini CC editors. Historia de La Pampa, sociedad, politica, economia, desde los poblamientos originales hasta la provincializacion: ca 8000 AP a 1952. Santa Rosa, La Pampa: Universidad Nacional de La Pampa.Google Scholar
  44. Lunt ID, Winsemius LM, McDonald SP, Morgan JW, Dehaan RL. 2010. How widespread is woody plant encroachment in temperate Australia? Changes in woody vegetation cover in lowland woodland and coastal ecosystems in Victoria from 1989 to 2005. J Biogeogr 37:722–32.CrossRefGoogle Scholar
  45. Marcucci DJ. 2000. Landscape history as a planning tool. Landsc Urban Plan 49:67–81.CrossRefGoogle Scholar
  46. McCulley RL, Jackson RB. 2012. Conversion of tallgrass prairie to woodland: Consequences for carbon and nitrogen cycling. Am Midl Nat 167:307–21.CrossRefGoogle Scholar
  47. McGarigal K, Cushman SA, Ene E. 2012. FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. Amherst: University of Massachusetts.Google Scholar
  48. Medina AA. 2007. Reconstrucción de los regímenes de fuego en un bosque de Prosopis caldenia, provincia de La Pampa, Argentina. Bosque 28:234–40.CrossRefGoogle Scholar
  49. Mendez JL. 2007a. Primer inventario nacional de bosques nativos: Inventario de campo de la región del Espinal. Buenos Aires: Dirección Nacional de Bosques. p p236.Google Scholar
  50. Mendez JL. 2007b. Primer inventario nacional de bosques nativos: Inventario de campo de la región del espinal—Anexo 1: Estado de conservación del Caldenal. Buenos Aires: Dirección nacional de bosques. p 86p.Google Scholar
  51. Mendez JL. 2007c. Primer inventario nacional de bosques nativos: Inventario de campo de la región del Espinal—Manual de teledetección. Buenos Aires: Dirección Nacional de Bosques. p p145.Google Scholar
  52. Munson SM, Muldavin EH, Belnap J, Peters DPC, Anderson JP, Reiser MH, Melgoza-Castillo A, Herrick JE, Christiansen TA. 2013. Regional signatures of plant response to drought and elevated temperature across a desert ecosystem. Ecology 94:2030–41.CrossRefPubMedGoogle Scholar
  53. Nosetto M, Jobbagy E, Brizuela AB, Jackson RB. 2012. The hydrologic consequences of land cover change in central Argentina. Agric Ecosyst Environ 154:2–11.CrossRefGoogle Scholar
  54. O’Neill RV, Krummel JR, Gardner RH, Sugihara G, Jackson B, DeAngelis DL, Milne BT, Turner MG, Zygmunt B, Christensen SW, Dale VH, Graham RL. 1988. Indices of landscape pattern. Landsc Ecol 1:153–62.CrossRefGoogle Scholar
  55. R Core Team. 2013. R: A language and environment for statistical computing. Austria: R Foundation for Statistical Computing V.Google Scholar
  56. Ramankutty N, Foley JA. 1999. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob Biogeochem Cycles 13:997–1027.CrossRefGoogle Scholar
  57. Ramos M, Bognanni F, Helfer V. 2009. Un estudio integral acerca del movimiento de ganado cimarron a escala interregional entre los siglos XVII y XIX. Revista de Arquilogia Americana 26:257–90.Google Scholar
  58. Sokal RR, Rohlf FJ. 1994. Biometry: The principles and practice of statistics in biological research. New York: W.H. Freeman.Google Scholar
  59. Soriano A, Leon RJC, Sala OE, Lavado RS, Deregibus VA, Cahuepe MA, Scaglia OA, Velazquez CA, Lemcoff JH. 1991. Rio de la Plata grasslands. In: Coupland RT, Ed. Ecosystems of the World 8A. New York: Elsevier. p 367–407.Google Scholar
  60. Swenson JJ, Franklin J. 2000. The effects of future urban development on habitat fragmentation in the Santa Monica Mountains. Landsc Ecol 15:713–30.CrossRefGoogle Scholar
  61. Tripaldi A, Zarate MA, Forman SL, Badger T, Ciccioli P. 2013. Geological evidence for a drought episode in the western Pampas (Argentina, South America) during the early–mid 20th century. Holocene 23(12):1731–46.CrossRefGoogle Scholar
  62. Yang YY, Zhang SW, Yang JC, Chang LP, Bu K, Xing XS. 2014. A review of historical reconstruction methods of land use/land cover. J Geogr Sci 24:746–66.CrossRefGoogle Scholar
  63. Zach A, Tiessen H, Noellemeyer E. 2006. Carbon turnover and carbon-13 natural abundance under land use change in semiarid savanna soils of La Pampa, Argentina. Soil Sci Soc Am J 70:1541–6.CrossRefGoogle Scholar
  64. Zink M. 2008. El poblamiento inicial de La Pampa según los principales sitios arqueológicos. In: Lluch AM, Salomon Tarquini CC, Eds. Historia de La Pampa, sociedad, politica, economia, desde los poblamientos originales hasta la provincializacion: ca 8000 AP a 1952. Santa Rosa: Universidad Nacional de La Pampa. Google Scholar
  65. Zink M, Salomon Tarquini CC. 2008. Las sociedades indígenas y las relaciones sociales en espacios de frontera. In: Lluch AM, Salomon Tarquini CC, Eds. Historia de La Pampa, sociedad, politica, economia, desde los poblamientos originales hasta la provincializacion: ca 8000 AP a 1952. Santa Rosa: Universidad Nacional de La Pampa. Google Scholar
  66. Zomer RJ, Trabucco A, Bossio DA, van Straaten O, Verchot LV. 2008. Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126:67–80.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mariano González-Roglich
    • 1
  • Jennifer J. Swenson
    • 1
  • Diego Villarreal
    • 2
  • Esteban G. Jobbágy
    • 3
  • Robert B. Jackson
    • 1
    • 4
  1. 1.Nicholas School of the EnvironmentDuke UniversityDurhamUSA
  2. 2.Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de La PampaSanta RosaArgentina
  3. 3.Grupo de Estudios AmbientalesCONICET & Universidad de San LuisSan LuisArgentina
  4. 4.School of Earth SciencesStanford UniversityStanfordUSA

Personalised recommendations