Advertisement

Ecosystems

, Volume 18, Issue 3, pp 428–440 | Cite as

Alteration of Macroalgal Subsidies by Climate-Associated Stressors Affects Behavior of Wrack-Reliant Beach Consumers

  • Iván F. Rodil
  • Paloma Lucena-Moya
  • Celia Olabarria
  • Francisco Arenas
Article

Abstract

Connectivity between ecosystems is of ecological relevance, especially when adjacent areas of contrasting productivity are compared. High-productive rocky shores dominated by macroalgae are one of the most important sources of wrack subsidies linked to low-productive sandy beaches. Rocky bed communities from nearshore environments are affected by shifts in ultraviolet radiation (UVR) and temperature. Therefore, any alteration to macroalgal traits, in terms of nutritional quality, pigments, or phlorotannins, due to environmental stress could trigger cascading changes in the food web of recipient ecosystems. To examine the effects of climate-associated variables, we mimicked a rocky intertidal ecosystem by constructing a set of mesocosm tanks harboring two macroalgal species, the native Laminaria ochroleuca and the non-indigenous Sargassum muticum, subjected to a combination of UVR and temperatures. We used the manipulated macroalgae to explore the effects of climate stress variables on the wrack-reliant amphipod Talitrus saltator. The macroalgae displayed differential and variable responses to UVR and temperature manipulations. L. ochroleuca nutrient quality and phlorotannins decreased with elevated UVR and at warm temperatures. S. muticum seemed to be more tolerant to stress conditions, and phlorotannin production was induced by elevated UVB. We documented concomitant effects induced by the treated macroalgae on the food consumption of T. saltator. We suggest that macroalgae became less palatable to T. saltator because chemical defenses were gained rather than a significant change in the nutritive value occurring. We hypothesize that the effects of warming and enhanced UVR on macroalgae might shift source-sink dynamics between connected ecosystems. Understanding the way in which climate-associated variables interact and influence subsidies in recipient ecosystems is of paramount relevance to assess the broad consequences of climate change and its proper management.

Keywords

connectivity Laminaria ochroleuca Sargassum muticum Talitrus saltator ultraviolet radiation warming 

Notes

Acknowledgments

We thank F. Barreiro, Á. Fernández, E. Sampaio and F. Vaz-Pinto for technical assistance. IFR was supported by a postdoctoral Grant from the Portuguese Foundation for Science and Technology–FCT (SFRH/BPD/87042/2012). We are grateful to one anonymous reviewer and the Subject-Matter Editor T. Done for helpful comments to the manuscript. This research was funded by CLEF-FCT (PTDC/AAC-AMB/102866/2008) within the COMPETE program, Xunta de Galicia through the ‘Programas Sectoriales de Investigación Aplicada’ (10MMA007CT/2010) co-participated by FEDER, and co-funded by the European Regional Development Fund (ERDF) through the ‘Programa Operacional Factores de Competitividade’ (POFC-COMPETE) within the ‘Quadro de Referência Estratégico Nacional’ (QREN) and PEst-C/MAR/LA0015/2011.

Supplementary material

10021_2014_9836_MOESM1_ESM.docx (195 kb)
Supplementary material 1 (DOCX 194 kb)

References

  1. Adin R, Riera PR. 2003. Preferential food source utilization among stranded macroalgae by Talitrus saltator (Amphipod, Talitridae): a stable isotopes study in the northern coast of Brittany (France). Estuar Coast Shelf Sci 56:91–8.CrossRefGoogle Scholar
  2. Becker S, Graeve M, Bischof K. 2010. Photosynthesis and lipid composition of the Antarctic endemic rhodophyte Palmaria decipiens: effects of changing light and temperature levels. Polar Biol 33:945–55.CrossRefGoogle Scholar
  3. Bischof K, Hanelt D, Tüg H, Karsten U, Brouwer P, Wiencke C. 1998. Acclimation of brown algal photosynthesis to ultraviolet radiation in Arctic coastal waters (Spitsbergen, Norway). Polar Biol 20:388–95.CrossRefGoogle Scholar
  4. Bischof K, Hanelt D, Wiencke C. 2000. Effects of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae. Planta 211:555–62.CrossRefPubMedGoogle Scholar
  5. Bothwell ML, Sherbot DMJ, Pollock CM. 1994. Ecosystem response to solar ultraviolet-B radiation: influence of trophic-level interactions. Science 265:97–100.CrossRefPubMedGoogle Scholar
  6. Britton-Simmons KH. 2004. Direct and indirect effects of the introduced alga S. muticum on benthic, subtidal communities of Washington State, USA. Mar Ecol Prog Ser 277:61–78.CrossRefGoogle Scholar
  7. Brown AC, McLachlan A. 2002. Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Environ Conserv 29:62–77.CrossRefGoogle Scholar
  8. Cacabelos E, Olabarria C, Incera M, Troncoso JS. 2010. Do grazers prefer invasive seaweeds? J Exp Mar Biol Ecol 393:182–7.CrossRefGoogle Scholar
  9. Caldwell MM, Bornman JF, Ballaré CL, Flint SD, Kulandaivelu G. 2007. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem Photobiol Sci 6:252–66.CrossRefPubMedGoogle Scholar
  10. Crawley MJ. 2007. The R book. Chichester: Wiley. p 942.CrossRefGoogle Scholar
  11. Cronin G, Hay ME. 1996. Effects of light and nutrient availability on the growth, secondary chemistry, and resistance to herbivory of two brown seaweeds. Oikos 77:93–106.CrossRefGoogle Scholar
  12. Cruz-Rivera E, Hay ME. 2000. Can quantitiy replace quality? Food choice, compensatory feeding, and fitness of marine mesograzers. Ecology 81(1):201–19.CrossRefGoogle Scholar
  13. Duarte C. 1992. Nutrient concentration of aquatic plants: patterns across species. Nutrient concentration of aquatic plants: patterns across species 37:882–9.Google Scholar
  14. Duarte C, Acuña K, Navarro JM, Gómez I. 2011. Intra-plant differences in seaweed nutritional quality and chemical defenses: importance for the feeding behavior of the intertidal amphipod Orchestoidea tuberculata. J Sea Res 66:215–21.CrossRefGoogle Scholar
  15. Duarte C, Jaramillo E, Contreras H, Acuña K. 2010. Cannibalism and food availability in the talitrid amphipod Orchestoidea tuberculata. J Sea Res 64:417–21.CrossRefGoogle Scholar
  16. Duarte CM, Cebrian J. 1996. The fate of marine autotrophic production. Limnol Oceanogr 41:1758–66.CrossRefGoogle Scholar
  17. Dugan JE, Hubbard DM, McCrary MD, Pierson MO. 2003. The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuar Coast Shelf Sci 58:25–40.CrossRefGoogle Scholar
  18. Figueroa FL, Domínguez-González B, Korbee N. 2014. Vulnerability and acclimation to increased UVB radiation in three intertidal macroalgae of different morpho-functional groups. Mar Environ Res 97:30–8.CrossRefPubMedGoogle Scholar
  19. Franklin LA, Forster RM. 1997. The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur J Phycol 32:207–32.Google Scholar
  20. Fredersdorf J, Müller R, Becker S, Wiencke C, Bischof K. 2009. Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp Alaria esculenta (Phaeophyceae). Oecologia 160:483–92.CrossRefPubMedGoogle Scholar
  21. Gao K, Zheng Y. 2010. Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta). Global Change Biol 16:2388–98.CrossRefGoogle Scholar
  22. Gutow L, Rahman MM, Bartl K, Saborowski R, Bartsch I, Wiencke C. 2014. Ocean acidification affects growth but not nutritional quality of the seaweed Fucus vesiculosus (Phaeophyceae, Fucales). J Exp Mar Biol Ecol 453:84–90.CrossRefGoogle Scholar
  23. Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJ, Thornber CS, Rodriguez LF, Tomanek L, Williams SL. 2006. The impacts of climate change in coastal marine systems. Ecol Lett 9:228–41.CrossRefPubMedGoogle Scholar
  24. Hemmi A, Jormalainen V. 2002. Nutrient enhancement increases performance of a marine herbivore via quality of its food alga. Ecology 83:1052–64.CrossRefGoogle Scholar
  25. Hoegh-Guldberg O, Bruno JF. 2010. The impact of climate change on the world’s marine ecosystems. Science 328:1523–8.CrossRefPubMedGoogle Scholar
  26. Hoffman JR, Hansen LJ, Klinger T. 2003. Interactions between UV radiation and temperature limit inferences from single-factor experiments. J Phycol 39:268–72.CrossRefGoogle Scholar
  27. Huovinen P, Matos J, Sousa-Pinto I, Figueroa FL. 2006. The role of ammonium in photoprotection against high irradiance in the red alga Grateloupia lanceola. Aquat Bot 84:308–16.CrossRefGoogle Scholar
  28. IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York. p 1535.Google Scholar
  29. Lastra M, Page HM, Dugan JE, Hubbard DM, Rodil IF. 2008. Processing of allochthonous macrophyte subsidies by sandy beach consumers: estimates of feeding rates and impacts on food resources. Mar Biol 154:163–74.CrossRefGoogle Scholar
  30. Lorenzen CJ. 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol Oceanogr 12:343–6.CrossRefGoogle Scholar
  31. Lotze HK, Worm B, Molis M, Wahl M. 2002. Effects of UV radiation and consumers on recruitment and succession of a marine macrobenthic community. Mar Ecol Prog Ser 243:57–66.CrossRefGoogle Scholar
  32. Madronich S, McKenzie RL, Björn LO, Caldwell MM. 1998. Changes in biologically active ultraviolet radiation reaching the Earth’s surface. J Photochem Photobiol B: Bioly 46:5–19.CrossRefGoogle Scholar
  33. Marczak LB, Thompson RM, Richardson JS. 2007. Meta-analysis: trophic level, habitat, and productivity shape the food web effects of resource subsidies. Ecology 88(1):140–8.CrossRefPubMedGoogle Scholar
  34. Mateos D, Antón M, Sánchez-Lorenzo A, Calbó J, Wild M. 2013. Long-term changes in the radiative effects of aerosols and clouds in a mid-latitude region (1985–2010). Global Planet Change 111:288–95.CrossRefGoogle Scholar
  35. McLachlan A, Brown AC. 2006. The ecology of sandy shores, Vol. 2Elsevier: Academic Press. p 373.Google Scholar
  36. Molis M, Wahl M. 2009. Comparison of the impacts of consumers, ambient UV, and future UVB irradiance on mid-latitudinal macroepibenthic assemblages. Global Change Biol 15:1833–45.CrossRefGoogle Scholar
  37. Monteiro CA, Engelen AH, Santos R. 2009. Macro-and mesoherbivores prefer native seaweeds over the invasive brown seaweed Sargassum muticum: a potential regulating role on invasions. Mar Biol 156:2505–15.CrossRefGoogle Scholar
  38. Nakano S, Murakami M. 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc Natl Acad Sci 98:166–70.CrossRefPubMedCentralPubMedGoogle Scholar
  39. Olabarria C, Arenas F, Viejo RM, Gestoso I, Vaz-Pinto F, Incera M, Rubal M, Cacabelos E, Veiga P, Sobrino C. 2013. Response of macroalgal assemblages from rockpools to climate change: effects of persistent increase in temperature and CO2. Oikos 122:1065–79.CrossRefGoogle Scholar
  40. Olabarria C, Incera M, Garrido J, Rodil IF, Rossi F. 2009. Intraspecific diet shift in Talitrus saltator inhabiting exposed sandy beaches. Estuar Coast Shelf Sci 84:282–8.CrossRefGoogle Scholar
  41. Orr M, Zimmer M, Jelinski DE, Mews M. 2005. Wrack deposition on different beach types: spatial and temporal variation in the pattern of subsidy. Ecology 86:1496–507.CrossRefGoogle Scholar
  42. Pavia H, Cervin G, Lindgren A, Aberg P. 1997. Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 157:139–46.CrossRefGoogle Scholar
  43. Polis GA, Anderson TW, Holt RD. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316.CrossRefGoogle Scholar
  44. Poore AGB, Graba-Landry A, Favret M, Brennand SH, Byrne M, Dworjanyn SA. 2013. Direct and indirect effects of ocean acidification and warming on a marine plant-herbivore interaction. Oecologia 173:1113–24.CrossRefPubMedGoogle Scholar
  45. R Development Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, Available: http://www.R-project.org/.
  46. Rodil IF, Olabarria C, Lastra M, López J. 2008. Differential effects of native and invasive algal wrack on macrofaunal assemblages inhabiting exposed sandy beaches. J Exp Mar Biol Ecol 358:1–13.CrossRefGoogle Scholar
  47. Rohde S, Molis M, Wahl M. 2004. Regulation of anti-herbivore defence by Fucus vesiculosus in response to various cues. J Ecol 92:1011–18.CrossRefGoogle Scholar
  48. Roleda MY, Hanelt D, Kräbs G, Wiencke C. 2004. Morphology, growth, photosynthesis and pigments in Laminaria ochroleuca (Laminariales, Phaeophyta) under ultraviolet radiation. Phycologia 43:603–13.CrossRefGoogle Scholar
  49. Rothaüsler E, Gómez I, Karsten U, Tala F, Thiel M. 2011. Physiological acclimation of floating Macrocystis pyrifera to temperature and irradiance ensures long-term persistence at the sea surface at mid-latitudes. J Exp Mar Biol Ecol 405:33–41.CrossRefGoogle Scholar
  50. Sánchez-Lorenzo A, Calbó J, Wild M. 2013. Global and diffuse solar radiation in Spain: building a homogeneous dataset and assessing their trends. Global Planet Change 100:343–52.CrossRefGoogle Scholar
  51. Schlacher T, Dugan JE, Schoeman DS, Lastra M, Jones A, Scapini F, McLachlan A, Defeo O. 2007. Sandy beaches at the brink. Divers Distrib 13:556–60.CrossRefGoogle Scholar
  52. Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with hosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16(3):144–58.Google Scholar
  53. Spiller DA, Piovia-Scott J, Wright AN, Yang LH, Takimoto G, Schoener TW, Iwata T. 2010. Marine subsidies have multiple effects on coastal food webs. Ecology 91:1424–34.CrossRefPubMedGoogle Scholar
  54. Swanson AK, Fox CH. 2007. Altered kelp (Laminariales) phlorotannins and growth under elevated carbon dioxide and ultraviolet-B treatments can influence associated intertidal food webs. Global Change Biol 13:1696–709.CrossRefGoogle Scholar
  55. Vähätalo A, Søndergaard M, Schlüter L, Markaager S. 1998. Impact of solar radiation on the decomposition of detrital leaves of eelgrass Zostera marina. Mar Ecol Prog Ser 170:107–17.CrossRefGoogle Scholar
  56. Van Alstyne KL. 1988. Herbivore grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichus. Ecology 69:655–63.CrossRefGoogle Scholar
  57. Van de Waal DB, Verschoor AM, Verspagen JMH, vand Donk E, Huisman J. 2009. Climate-driven changes in the ecological stoichiometry of aquatic ecosystems. Front Ecol Environ 8:145–52.CrossRefGoogle Scholar
  58. Weatherhead EC, Andersen SB. 2006. The search for signs of recovery of the ozone layer. Nature 441:39–45.CrossRefPubMedGoogle Scholar
  59. Wernberg T, Vanderklift MA, How J, Lavery PS. 2006. Export of detached macroalgae from reefs to adjacent seagrass beds. Oecologia 147:692–701.CrossRefPubMedGoogle Scholar
  60. Wild M. 2009. Global dimming and brightening: a review. J Geophys Res 114:D00D16. doi: 10.1029/2008JD011470.Google Scholar
  61. Xu J, Gao K. 2010. UV-A enhanced growth and UV-B induced positive effects in the recovery of photochemical yield in Gracilaria lemaneiformis (Rhodophyta). J Photochem Photobiol B 100:117–22.CrossRefPubMedGoogle Scholar
  62. Young HS, McCauley DJ, Dunbar RB, Dirzo R. 2010. Plants cause ecosystem nutrient depletion via the interruption of bird-derived spatial subsidies. Proc Natl Acad Sci 107:2072–7.CrossRefPubMedCentralPubMedGoogle Scholar
  63. Zacher K, Wulff A, Molis M, Hanelt D, Wiencke C. 2007. Ultraviolet radiation and consumer effects on a field-grown intertidal macroalgal assemblage in Antarctica. Global Change Biol 13:1201–15.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Iván F. Rodil
    • 1
  • Paloma Lucena-Moya
    • 1
  • Celia Olabarria
    • 2
  • Francisco Arenas
    • 1
  1. 1.Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoPortoPortugal
  2. 2.Department of Ecology and Animal BiologyUniversity of VigoVigoSpain

Personalised recommendations