Advertisement

Ecosystems

, Volume 18, Issue 3, pp 404–416 | Cite as

What Can Stable Isotope Analysis of Top Predator Tissues Contribute to Monitoring of Tundra Ecosystems?

  • Dorothee Ehrich
  • Rolf A. Ims
  • Nigel G. Yoccoz
  • Nicolas Lecomte
  • Siw T. Killengreen
  • Eva Fuglei
  • Anna Y. Rodnikova
  • Barwolt S. Ebbinge
  • Irina E. Menyushina
  • Bart A. Nolet
  • Ivan G. Pokrovsky
  • Igor Y. Popov
  • Niels M. Schmidt
  • Aleksandr A. Sokolov
  • Natalya A. Sokolova
  • Vasily A. Sokolov
Article

Abstract

Understanding how climate change and increasing human impacts may exert pressure on ecosystems and threaten biodiversity requires efficient monitoring programs. Indicator species have been proposed as useful tools, and predators and their diet may be particularly suitable. The vast and remote arctic tundra represents a good case study as shifts in ecosystem states are presently occurring, and monitoring is a major challenge. Here we assess what stable isotopes reflecting the diet of the arctic fox, a widespread and highly flexible top predator, can contribute to effective monitoring of the vertebrate prey basis of Arctic tundra. We used data collected over 2–5 years from six sites in the Eurasian Arctic and Greenland. Stable isotope signatures of arctic fox winter fur reflected both spatial and temporal variability in the composition of the vertebrate prey basis. Clear contrasts were apparent in the importance of marine resources, as well as of small rodents and their multiannual density fluctuations. Some important resources could however not be separated because of confounding isotopic signatures. Moreover, except for preferred prey, the proportions of prey in the diet may not necessarily reflect the relative importance of species in the community of available prey. Knowing these limitations, we suggest that the arctic fox diet as inferred from stable isotopes could serve as one of several key targets in ecosystem-based monitoring programs.

Keywords

ecological indicator monitoring stable isotopes predator diet arctic tundra food web Vulpes lagopus 

Notes

Acknowledgments

We thank all the people who contributed to field work in the different sites, and Sissel Kaino and Jennifer Stien for help in the lab. This study was supported by the Research Council of Norway’s International Polar Year Program (project Arctic Predators), the Norwegian Directorate of Nature Management (project Arctic fox in Finnmark), the Danish Environmental Protection Agency (Zackenberg Basic), the Netherlands Organisation for Scientific Research, and the Russian Foundation for Basic Research (Grant No. 047.017.038 to BAN), the Norwegian Polar Institute (Projects arctic fox, reindeer, ptarmigan and sea bird monitoring in Svalbard), and the State Nature reserve “Wrangel Island”. We thank three anonymous referees and John Pastor for constructive comments on a previous version of the manuscript.

Supplementary material

10021_2014_9834_MOESM1_ESM.docx (938 kb)
Supplementary material 1 (DOCX 938 kb)

References

  1. Angerbjorn A, Tannerfeldt M, Erlinge S. 1999. Predator-prey relationships: Arctic foxes and lemmings. J Anim Ecol 68:34–49.CrossRefGoogle Scholar
  2. Angerbjörn A, Hersteinsson P, Tannerfeldt M. 2008. Alopex lagopus. In: IUCN 2013. IUCN Red List of Threatened Species. Version 2013.1. www.iucnredlist.org. Accessed 25 July 2013.
  3. Batzli GO, Henttonen H. 1990. Demography and resource use by microtine rodents near Toolik Lake, Alaska, USA. Arct Alp Res 22:51–64.CrossRefGoogle Scholar
  4. Ben-David M, Flaherty EA. 2012. Stable isotopes in mammalian research: a beginner’s guide. J Mammal 93:312–28.CrossRefGoogle Scholar
  5. Bety J, Gauthier G, Korpimaki E, Giroux JF. 2002. Shared predators and indirect trophic interactions: lemming cycles and arctic-nesting geese. J Anim Ecol 71:88–98.CrossRefGoogle Scholar
  6. Cairns J, McCormick PV, Niederlehner BR. 1993. A proposed framework for developing indicators of ecosystem health. Hydrobiologia 263:1–44.CrossRefGoogle Scholar
  7. Careau V, Giroux JF, Gauthier G, Berteaux D. 2008. Surviving on cached foods—the energetics of egg-caching by arctic foxes. Can J Zool 86:1217–23.CrossRefGoogle Scholar
  8. Christensen T, Payne J, Doyle M, Ibarguchi G, Taylor J, Schmidt NM, Gill M, Svoboda M, Aronsson M, Behe C, Buddle C, Cuyler C, Fosaa AM, Fox AD, Heidmarsson S, Henning Krogh P, Madsen J, McLennan D, Nymand J, Rosa C, Salmela J, Shuchman R, Soloviev M, Wedege M. 2013. The arctic terrestrial biodiversity monitoring plan. CAFF monitoring series report No. 7. CAFF International Secretariat. Akureyri, Iceland.Google Scholar
  9. Croll DA, Maron JL, Estes JA, Danner EM, Byrd GV. 2005. Introduced predators transform subarctic islands from grassland to tundra. Science 307:1959–61.CrossRefPubMedGoogle Scholar
  10. Darimont CT, Paquet PC, Reimchen TE. 2009. Landscape heterogeneity and marine subsidy generate extensive intrapopulation niche diversity in a large terrestrial vertebrate. J Anim Ecol 78:126–33.CrossRefPubMedGoogle Scholar
  11. De Raad JA, Mazurov YL, Ebbinge BS, Eds. 2011. Pristine wilderness of the Taimyr Peninsula; 2008 expedition to the Pyasina Delta, Taimyr peninsula, Russian Federation. Alterra Report 2190. Wageningen: Alterra.Google Scholar
  12. Dunaeva TN. 1948. Comparative ecology of the tundra voles of Yamal. In: Formozov AN, Ed. Materials of the Institute of Geography of Academy of Sciences of USSR. Moscow: Academy of Sciences of USSR, USSR. p 78–143 (in Russian).Google Scholar
  13. Durant JM, Hjermann DO, Frederiksen M, Charrassin JB, Le Maho Y, Sabarros PS, Crawford RJM, Stenseth NC. 2009. Pros and cons of using seabirds as ecological indicators. Clim Res 39:115–29.CrossRefGoogle Scholar
  14. Ehrich D, Lecomte N, Fuglei E, Ims RA, Yoccoz NG. 2011. Arctic predators as indicators of climate impacts. In: Orheim O, Ulstein K, Eds. International polar year 2007–2008. The Norwegian Contribution. Oslo: Research Council of Norway. Google Scholar
  15. Ehrich D, Henden JA, Ims RA, Doronina LO, Killengren ST, Lecomte N, Pokrovsky IG, Skogstad G, Sokolov AA, Sokolov VA, Yoccoz NG. 2012. The importance of willow thickets for ptarmigan and hares in shrub tundra: the more the better? Oecologia 168:141–51.CrossRefPubMedGoogle Scholar
  16. Eide NE, Jepsen JU, Prestrud P. 2004. Spatial organization of reproductive Arctic foxes Alopex lagopus: responses to changes in spatial and temporal availability of prey. J Anim Ecol 73:1056–68.CrossRefGoogle Scholar
  17. Eide NE, Eid PM, Prestrud P, Swenson JE. 2005. Dietary responses of arctic foxes Alopex lagopus to changing prey availability across an Arctic landscape. Wildl Biol 11:109–21.CrossRefGoogle Scholar
  18. Eide NE, Stien A, Prestrud P, Yoccoz NG, Fuglei E. 2012. Reproductive responses to spatial and temporal prey availability in a coastal Arctic fox population. J Anim Ecol 81:640–8.CrossRefPubMedGoogle Scholar
  19. Elmhagen B, Tannerfeldt M, Verucci P, Angerbjorn A. 2000. The arctic fox (Alopex lagopus): an opportunistic specialist. J Zool 251:139–49.CrossRefGoogle Scholar
  20. Elmhagen B, Tannerfeldt M, Angerbjorn A. 2002. Food-niche overlap between arctic and red foxes. Can J Zool 80:1274–85.CrossRefGoogle Scholar
  21. Elmhagen B, Hellstrom P, Angerbjorn A, Kindberg J. 2011. Changes in vole and lemming fluctuations in northern Sweden 1960-2008 revealed by fox dynamics. Ann Zool Fenn 48:167–79.CrossRefGoogle Scholar
  22. Feige N, Ehrich D, Popov IY, Broekhuizen S. 2012. Monitoring least weasels after a winter Peak of lemmings in taimyr: body condition, diet and habitat use. Arctic 65:273–82.CrossRefGoogle Scholar
  23. Ferguson SH, Berteaux D, Gaston AJ, Higdon JW, Lecomte N, Lunn N, Mallory ML, Reist J, Russell D, Yoccoz NG, Zhu X. 2012. Time series data for Canadian arctic vertebrates: IPY contributions to science, management, and policy. Clim Change 115:235–58.CrossRefGoogle Scholar
  24. Fuglei E, Oritsland NA, Prestrud P. 2003. Local variation in arctic fox abundance on Svalbard, Norway. Polar Biol 26:93–8.Google Scholar
  25. Galvan DE, Sweeting CJ, Polunin NVC. 2012. Methodological uncertainty in resource mixing models for generalist fishes. Oecologia 169:1083–93.CrossRefPubMedGoogle Scholar
  26. Gauthier G, Berteaux D, Bety J, Tarroux A, Therrien JF, McKinnon L, Legagneux P, Cadieux MC. 2011. The tundra food web of Bylot Island in a changing climate and the role of exchanges between ecosystems. Ecoscience 18:223–35.CrossRefGoogle Scholar
  27. Gilg O, Yoccoz NG. 2010. Explaining bird migration. Science 327:276–7.CrossRefPubMedGoogle Scholar
  28. Gilg O, Sittler B, Hanski I. 2009. Climate change and cyclic predator-prey population dynamics in the high Arctic. Glob Change Biol 15:2634–52.CrossRefGoogle Scholar
  29. Gilg O, Kovacs KM, Aars J, Fort J, Gauthier G, Gremillet D, Ims RA, Meltofte H, Moreau J, Post E, Schmidt NM, Yannic G, Bollache L. 2012. Climate change and the ecology and evolution of Arctic vertebrates. Ann N Y Acad Sci 1249:166–90.CrossRefPubMedGoogle Scholar
  30. Giroux MA, Berteaux D, Lecomte N, Gauthier G, Szor G, Bety J. 2012. Benefiting from a migratory prey: spatio-temporal patterns in allochthonous subsidization of an arctic predator. J Anim Ecol 81:533–42.CrossRefPubMedGoogle Scholar
  31. Goltsman ME, Nanova OG, Sergeev SN, Shienok AN. 2011. The food habits of arctic fox (Alopex lagopus semenovi) reproductive families on Mednyi Island (Commander Islands). Biol Bull 38:709–25.CrossRefGoogle Scholar
  32. Gremillet D, Charmantier A. 2010. Shifts in phenotypic plasticity constrain the value of seabirds as ecological indicators of marine ecosystems. Ecol Appl 20:1498–503.CrossRefPubMedGoogle Scholar
  33. Hamel S, Killengreen ST, Henden JA, Yoccoz NG, Ims RA. 2013. Disentangling the importance of interspecific competition, food availability, and habitat in species occupancy: recolonization of the endangered Fennoscandian arctic fox. Biol Conserv 160:114–20.CrossRefGoogle Scholar
  34. Hansen BB, Grotan V, Aanes R, Saether BE, Stien A, Fuglei E, Ims RA, Yoccoz NG, Pedersen AO. 2013. Climate events synchronize the dynamics of a resident vertebrate community in the high arctic. Science 339:313–15.CrossRefPubMedGoogle Scholar
  35. Henden JA, Ims RA, Yoccoz NG, Killengreen ST. 2011. Declining willow ptarmigan populations: the role of habitat structure and community dynamics. Basic Appl Ecol 12:413–22.CrossRefGoogle Scholar
  36. Henden JA, Stien A, Bårdsen BJ, Yoccoz NG, Ims RA. 2014. Community-wide mesocarnivore response to partial ungulate migration. J Appl Ecol. doi: 10.1111/1365-2664.12328.Google Scholar
  37. Hersteinsson P, Macdonald DW. 1996. Diet of arctic foxes (Alopex lagopus) in Iceland. J Zool 240:457–74.CrossRefGoogle Scholar
  38. Ims RA, Fuglei E. 2005. Trophic interaction cycles in tundra ecosystems and the impact of climate change. Bioscience 55:311–22.CrossRefGoogle Scholar
  39. Ims RA, Henden JA, Killengreen ST. 2008. Collapsing population cycles. Trends Ecol Evol 23:79–86.CrossRefPubMedGoogle Scholar
  40. Ims RA, Yoccoz NG, Killengreen ST. 2011. Determinants of lemming outbreaks. Proc Natl Acad Sci USA 108:1970–4.CrossRefPubMedCentralPubMedGoogle Scholar
  41. Ims RA, Ehrich D, Forbes BC, Huntley B, Walker DA, Wookey PA, Berteaux D, Bhatt US, Bråthen KA, Edwards ME, Epstein HE, Forchhammer MC, Fuglei E, Gauthier G, Gilbert S, Leung M, Menyushina IE, Ovsyanikov NG, Post E, Raynolds MK, Reid DG, Schmidt NM, Stien A, Van der Sumina OI, Wal R. 2013a. Terrestrial ecosystems. In: Meltofte H, Ed. Arctic biodiversity assessment. Status and trends in Arctic biodiversity. Akureyri: Conservation of Arctic Flora and Fauna. Google Scholar
  42. Ims RA, Jepsen JU, Stien A, Yoccoz NG. 2013b. Science plan for COAT: Climate-ecological Observatory for Arctic Tundra. Fram Centre report series 1. Norway: Fram Centre.Google Scholar
  43. Inger R, Bearhop S. 2008. Applications of stable isotope analyses to avian ecology. Ibis 150:447–61.CrossRefGoogle Scholar
  44. Jackson AL, Inger R, Parnell AC, Bearhop S. 2011. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602.CrossRefPubMedGoogle Scholar
  45. Jefferies RL, Drent RH. 2006. Arctic geese, migratory connectivity and agricultural change: calling the sorcerer’s apprentice to order. Ardea 94:537–54.Google Scholar
  46. Jorgensen SE, Burkhard B, Muller F. 2013. Twenty volumes of ecological indicators—an accounting short review. Ecol Ind 28:4–9.CrossRefGoogle Scholar
  47. Kausrud KL, Mysterud A, Steen H, Vik JO, Ostbye E, Cazelles B, Framstad E, Eikeset AM, Mysterud I, Solhoy T, Stenseth NC. 2008. Linking climate change to lemming cycles. Nature 456:93.CrossRefPubMedGoogle Scholar
  48. Killengreen ST, Ims RA, Yoccoz NG, Brathen KA, Henden JA, Schott T. 2007. Structural characteristics of a low Arctic tundra ecosystem and the retreat of the Arctic fox. Biol Conserv 135:459–72.CrossRefGoogle Scholar
  49. Killengreen ST, Lecomte N, Ehrich D, Schott T, Yoccoz N, Ims RA. 2011. The importance of marine vs. human-induced subsidies in the maintenance of an expanding mesocarnivore in the arctic tundra. J Anim Ecol 80:1049–60.CrossRefPubMedGoogle Scholar
  50. Killengreen ST, Ims RA, Henden JA, Yoccoz NG, Ehrich D. 2013. Prosjekt “Fjellrev i Finnmark”: Rapport for 2008-2012. Tromsø: Institutt for Arktisk og Marin Biologi, Universitetet i Tromsø (in Norwegian).Google Scholar
  51. Korpela K, Delgado M, Henttonen H, Korpimaki E, Koskela E, Ovaskainen O, Pietiainen H, Sundell J, Yoccoz NG, Huitu O. 2013. Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles. Glob Change Biol 19:697–710.CrossRefGoogle Scholar
  52. Krebs CJ. 2011. Of lemmings and snowshoe hares: the ecology of northern Canada. Proc R Soc B 278:481–9.CrossRefPubMedCentralPubMedGoogle Scholar
  53. Landres PB, Verner J, Thomas JW. 1988. Ecological uses of vertebrate indicator species—a critique. Conserv Biol 2:316–28.CrossRefGoogle Scholar
  54. Layman CA, Araujo MS, Boucek R, Hammerschlag-Peyer CM, Harrison E, Jud ZR, Matich P, Rosenblatt AE, Vaudo JJ, Yeager LA, Post DM, Bearhop S. 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev 87:545–62.CrossRefPubMedGoogle Scholar
  55. Lecomte N, Ahlstrom O, Ehrich D, Fuglei E, Ims RA, Yoccoz NG. 2011. Intrapopulation variability shaping isotope discrimination and turnover: experimental evidence in Arctic foxes. PLoS ONE 6:e21357.CrossRefPubMedCentralPubMedGoogle Scholar
  56. Lindenmayer DB, Likens GE. 2011. Direct measurement versus surrogate indicator species for evaluating environmental change and biodiversity loss. Ecosystems 14:47–59.CrossRefGoogle Scholar
  57. Meltofte H, Christensen TR, Elberling B, Forchhammer MC, Rasch M, Eds. 2008. High-arctic ecosystem dynamics in a changing climate: ten years of monitoring and research at Zackenberg Research Station, Northeast Greenland. Advances in ecological research, Vol. 40. San Diego: Elsevier. pp 1–563.CrossRefGoogle Scholar
  58. Meltofte H, Barry T, Berteaux D, Bültmann H, Christiansen JS, Cook JA, Dahlberg A, Daniëls FJA, Ehrich D, Fjeldså J, Friðriksson F, Ganter B, Gaston AJ, Gillespie LJ, Grenoble L, Hoberg EP, Hodkinson ID, Huntington HP, Ims RA, Josefson AB, Kutz SJ, Kuzmin SL, Laidre KL, Lassuy DR, Lewis PN, Lovejoy C, Michel C, Mokievsky V, Mustonen T, Payer DC, Poulin M, Reid DG, Reist JD, Tessler DF, Wrona FJ. 2013. Synthesis: implications for conservation. In: Meltofte H, Ed. Arctic biodiversity assessment. Status and trends in Arctic biodiversity. Akureyri: Conservation of Arctic Flora and Fauna. Google Scholar
  59. Menyushina I, Ehrich D, Henden J-A, Ims RA, Ovsyanikov N. 2012. The nature of lemming cycles on Wrangel: an island without small mustelids. Oecologia 170:363–71.CrossRefPubMedGoogle Scholar
  60. Newsome SD, del Rio CM, Bearhop S, Phillips DL. 2007. A niche for isotopic ecology. Front Ecol Environ 5:429–36.CrossRefGoogle Scholar
  61. Nolet BA, Bauer S, Feige N, Kokorev YI, Popov IY, Ebbinge BS. 2013. Faltering lemming cycles reduce productivity and population size of a migratory Arctic goose species. J Anim Ecol 82:804–13.CrossRefPubMedCentralPubMedGoogle Scholar
  62. Parnell AC, Inger R, Bearhop S, Jackson AL. 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5:e9672.CrossRefPubMedCentralPubMedGoogle Scholar
  63. Piatt JF, Sydeman WJ, Wiese F. 2007. Introduction: a modern role for seabirds as indicators. Mar Ecol Prog Ser 352:199–204.CrossRefGoogle Scholar
  64. Post E, Bhatt US, Bitz CM, Brodie JF, Fulton TL, Hebblewhite M, Kerby J, Kutz SJ, Stirling I, Walker DA. 2013. Ecological consequences of sea-ice decline. Science 341:519–24.CrossRefPubMedGoogle Scholar
  65. R Core Team. 2013. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  66. Resano-Mayor J, Hernandez-Matias A, Real J, Pares F, Inger R, Bearhop S. 2014. Comparing pellet and stable isotope analyses of nestling Bonelli’s Eagle Aquila fasciata diet. Ibis 156:176–88.CrossRefGoogle Scholar
  67. Richards MP, Fuller BT, Sponheimer M, Robinson T, Ayliffe L. 2003. Sulphur isotopes in palaeodietary studies: a review and results from a controlled feeding experiment. Int J Osteoarchaeol 13:37–45.CrossRefGoogle Scholar
  68. Samelius G, Alisauskas RT, Hobson KA, Lariviere S. 2007. Prolonging the arctic pulse: long-term exploitation of cached eggs by arctic foxes when lemmings are scarce. J Anim Ecol 76:873–80.CrossRefPubMedGoogle Scholar
  69. Sayle KL, Cook GT, Ascough PL, Hastie HR, Einarsson A, McGovern TH, Hicks MT, Edwald A, Frioriksson A. 2013. Application of 34S analysis for elucidating terrestrial, marine and freshwater ecosystems: evidence of animal movement/husbandry practices in an early Viking community around Lake Myvatn, Iceland. Geochim Cosmochim Acta 120:531–44.CrossRefGoogle Scholar
  70. Schmidt NM, Berg TB, Forchhammer MC, Hendrichsen DK, Kyhn LA, Meltofte H, Hoye TT. 2008. Vertebrate predator-prey interactions in a seasonal environment. Adv Ecol Res 40:345–70.CrossRefGoogle Scholar
  71. Schmidt NM, Ims RA, Hoye TT, Gilg O, Hansen LH, Hansen J, Lund M, Fuglei E, Forchhammer MC, Sittler B. 2012. Response of an arctic predator guild to collapsing lemming cycles. Proc R Soc B 279:4417–22.CrossRefPubMedCentralPubMedGoogle Scholar
  72. Sergio F, Caro T, Brown D, Clucas B, Hunter J, Ketchum J, McHugh K, Hiraldo F. 2008. Top predators as conservation tools: ecological rationale, assumptions, and efficacy. Annu Rev Ecol Evol Syst 39:1–19.CrossRefGoogle Scholar
  73. Shtro VG. 2009. The arctic fox in Yamal. Ekaterinburg: UrO RAN (in Russian).Google Scholar
  74. Simberloff D. 1998. Flagships, umbrellas, and keystones: is single-species management passe in the landscape era? Biol Conserv 83:247–57.CrossRefGoogle Scholar
  75. Sillero-Zubiri C, Angerbjörn A. 2009. Arctic foxes and climate change. Out-foxed by Arctic warming. The IUCN Red List of Threatened Species.Google Scholar
  76. Sokolov V, Ehrich D, Yoccoz N, Sokolov A, Lecomte N. 2012. Bird communities of the Arctic shrub tundra of Yamal: habitat specialists and generalists. PLoS ONE 7:e50335.CrossRefPubMedCentralPubMedGoogle Scholar
  77. Sokolova NA, Sokolov AA, Ims RA, Skogstad G, Lecomte N, Sokolov VA, Yoccoz NG, Ehrich D. 2014. Small rodents in the shrub tundra of Yamal (Russia): density dependence in habitat use? Mamm Biol 79:306–12.Google Scholar
  78. Springer AM, Byrd GV, Iverson SJ. 2007. Hot oceanography: planktivorous seabirds reveal ecosystem responses to warming of the Bering Sea. Mar Ecol Prog Ser 352:289–97.CrossRefGoogle Scholar
  79. Tarroux A, Bety J, Gauthier G, Berteaux D. 2012. The marine side of a terrestrial carnivore: intra-population variation in use of allochthonous resources by Arctic foxes. PLoS ONE 7:e42427.CrossRefPubMedCentralPubMedGoogle Scholar
  80. Touzeau A, Amiot R, Blichert-Toft J, Flandrois JP, Fourel F, Grossi V, Martineau F, Richardin P, Lecuyer C. 2014. Diet of ancient Egyptians inferred from stable isotope systematics. J Archaeol Sci 46:114–24.CrossRefGoogle Scholar
  81. Voigt W, Perner J, Davis AJ, Eggers T, Schumacher J, Bahrmann R, Fabian B, Heinrich W, Kohler G, Lichter D, Marstaller R, Sander FW. 2003. Trophic levels are differentially sensitive to climate. Ecology 84:2444–53.CrossRefGoogle Scholar
  82. Walker DA, Raynolds MK, Daniels FJA, Einarsson E, Elvebakk A, Gould WA, Katenin AE, Kholod SS, Markon CJ, Melnikov ES, Moskalenko NG, Talbot SS, Yurtsev BA. 2005. The Circumpolar Arctic vegetation map. J Veg Sci 16:267–82.CrossRefGoogle Scholar
  83. Yoccoz NG. 2012. Ecological monitoring. eLS. doi: 10.1002/9780470015902.a0023571.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Dorothee Ehrich
    • 1
  • Rolf A. Ims
    • 1
  • Nigel G. Yoccoz
    • 1
  • Nicolas Lecomte
    • 1
    • 2
  • Siw T. Killengreen
    • 1
  • Eva Fuglei
    • 3
  • Anna Y. Rodnikova
    • 1
    • 4
  • Barwolt S. Ebbinge
    • 5
  • Irina E. Menyushina
    • 6
  • Bart A. Nolet
    • 7
  • Ivan G. Pokrovsky
    • 1
    • 8
  • Igor Y. Popov
    • 9
  • Niels M. Schmidt
    • 10
  • Aleksandr A. Sokolov
    • 11
    • 12
  • Natalya A. Sokolova
    • 11
    • 12
  • Vasily A. Sokolov
    • 13
  1. 1.Department of Arctic and Marine BiologyUiT - The Arctic University of NorwayTromsøNorway
  2. 2.Canada Research Chair in Polar and Boreal Ecology, Department of BiologyUniversity of MonctonMonctonCanada
  3. 3.The Norwegian Polar InstituteFram CentreTromsøNorway
  4. 4.Faculty of Biology, Department of Vertebrate ZoologyLomonosov Moscow State UniversityMoscowRussia
  5. 5.Team Animal EcologyAlterra Wageningen URWageningenThe Netherlands
  6. 6.State Nature Reserve “Wrangel Island”PevekRussia
  7. 7.Department of Animal EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands
  8. 8.Department of Migration and Immuno-ecologyMax Planck Institute for OrnithologyRadolfzellGermany
  9. 9.Laboratory of Biogeocenology and Historical Ecology, A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
  10. 10.Arctic Research Centre, Department of BioscienceAarhus UniversityRoskildeDenmark
  11. 11.Ecological Research Station, Institute of Plant and Animal EcologyUral Branch of Russian Academy of SciencesLabytnangiRussia
  12. 12. Science Center for Arctic StudiesState Organization of Yamal-Nenets Autonomous DistrictSalekhardRussia
  13. 13.Institute of Plant and Animal EcologyUral Branch of Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations